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FOREWORD

These Proceedings preserve in print many of the invited addresses and con-
tributed papers presented at the Thirtieth Conference on the Design of
Experiments in Army Research, Development and Testing. These meetings are
sponsored by the Army Mathematics Steering Committee (AMSC) on behalf of the
Office of the Chief of Research, Development and Acquisition, Members of this
Committee have requested that the guest lecturers be effective researchers who
are in frontier fields of live current interest. They feel that the addresses
by the principal speakers as well as contributed papers by Army personnel will
stimulate the interchange of ideas among the scientists attending said meet-
ing. Noted below is a list of the invited speakers together with the titles
of their addresses.

Speakers and Affiliations Title

Professor John W. Tukey Limited Randomization as the Key to Taking
Princeton University and Advantage of Modern Summaries
bell Laboratories

Professor Roy E. Welsch Regression Diagnostics
Massachusetts Institute of K
Technulogy

Professor James Bucklew Quantization
University of Wisconsin

Professor Ulf Grenander Recent Work in Pattern Theory
Brown University

Dr. Ronald L. Iman Uncertainty Analysis and Sensitivity
Sandia Laboratories in Risk Assessment

Professor Bernard Harris System Reliability
University of Wisconsin-Madison

Tne U. S. Army White Sands Missile Range, on 22-24 August 1980, served as host
for the Twenty.-Sixth Conference on the Design of Experiments, and the meeting
was conducted on the campus of its co-host, the New Mexico State University
(NMSU) in Las Cruces, New Mexico. This proved to be an ideal arrangement, and
members of the AMSC were pleased to hear it could be used for the Thirtieth..
Conference. This meeting took place on 17-18 October 1984 in the Physical
Science Laboratory of NMSU. The attendees would like to thank Mr. Robert A.
Voss, the Chairman on Local Arrangements, for all his efforts in planning and
conducting this conference.
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A couple of days before the start of the Design Conference, a two-day tutorial
entitled "The Bootstrap" was presented by Professor Robert Tibshirani of
Stanford University. The main purpose of this seminar was to develop, in Army
scientists, an appreciation for and the necessary skills needed to handle this
statistical method. V.

Professor Nozer D. Singpurwalla, Department of Operations Research at George
Washington University, was selected by the AMSC to receive the Fourth Wllks
Award for Contributions to Statistical Methodologies in Army Research,
Development and Testing. The citation for his award reads:

"For singular contributions to reliability theory and life
testing methodologies, for professional service to the
statistics community, and for invaluable assistance in
solving several important testing problems in the Department
of Defense." I,.

There are many individuals and things that contribute to the success of these

scientific meetings such as the speakers, invited and contributed panelists,
the chairpersons, members of the audience, as well as the hosts and their
facilities. Sometimes one overlooks the contributions of the members of the
Prograin Committees, so this year the AMSC would like to take this occasion to
express its appreciation for their valuable scientific contributions to the
stature of these conferences. The names of the committee members for the
Thirtieth Conference are:

PROGRAM COMMITTEE

Carl Bates Carl Russell
Larry Crow Douglas Tang
Bernard Harris Malcolm Taylor
Robert Launer Jerry Thomas
J. Richard Moore Langhorne Withers
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AGENDA

'l1IRT.T1E1I CONFERENCE UN T'E DESIGN OF EXPERIMENTS 1N
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* * *, * * Wedimusday, 17 October * * * * *

U0l5-0916 REGISTRATIUN t.
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SUI•,•AR I ES
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6'
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QUANTILE MODELING
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AN INTRODUCTION TO REGRESSION DIAGNOSTICS

Roy E. Welsch F

Sloan School of Managoment ,

Massachusetts Institute of Technology

ABSTRACT

A regression is constructed using prior knowledge, data, models, and a "'5

fitting (estimation) process of some form. It is important to know when the

resulting regression depends heavily on a small part of the prior knowledge,

on a small part of the data, or on the exact choice of model or fitting

process. We want models that are sensitive to the issues of interest, but

perform well (i.e., are less sensitive) when assumptions are violated. In

this paper we present an overview of the theory, application, and computation

of regression diagnostics, especially those related to the analysis of

influential data.
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INrRODUCTIO"

Our basic goal in this paper is to learn if our regression is heavily

"* influenced by small subsets of data. A traditional starting point is to look

for outliers which may be viewed as observations that appear to be surprising

to the investigator, or observations that are not a realization from some

target distribution. It is essential that all data used in regression models ,

* be examined for outliers. The first step is to look at the response and

explanatory variables separately to get a feeling for outliers. At this time,

transformations of these variables might be considered. A heavily skewed data Y

"* series may appear to have lots of outliers. A logarithmic transformation may

make the outliers appear much more like the rest of the data. Such transfor-

mations are, of course, tentative and need to be considered in light of prior

"knowledge and subsequent results. 
I.

Such a univariate examination does not help us find outliers relative to a

particular model and fitting process. In fact, some of the univariate

outliers may not look so discrepant in the context of a multivariate model.

Conversely, and more commonly, multivariate outliers will arise which cannot

be seen in a univariate analysis.

A particularly useful way to detect outliers in the context of a model is

to look for overly influential subsets of data. Subsets of data are regarded

2.
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as influential if their deletion results in substantial changes to important

features of an analysis.

Our discussion of regression diagnostics starts with preliminary steps

that are necessary before the decision is made to use a least-squares linear

regression model. Then we introduce the idea of adjusted variables and J.

partial regression plots. After a brief discussion of collinearity

diagnostics, we define leverage and several different kinds of residuals. We

then go on to measure influence and develop plots to summarize influential .4

data diagnostics.. We conclude with a brief treatment of diagnostic@ for

generalized linear models and coments about some areas of research in

diagnostic methods. N"

There are many reasons for performing a regression analysis. Two of the

most common are:

(a) fitting an equation or model to data

(b) attempting to describe local averages of y about values of x •..

E(ylx) - g(x). (1)

Both of these involve the response data, y, and the regressors X1, X2 ,

etc. All too often, the data and (a) and (b) are combined into

y U X0 + C (2)

where X is an nxp matrix of regressors, possibly including the constant

carrier, y is nxl, 1 is pxl and C is nxl. The estimated coefficients, b,

are then obtained by a fitting process (usually least-squares) without a great

deal of thought.

3
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An important first Qtep is to look at the variables y, and Xl, X2 , etc.

separately. These data should be explored using histograms, stem-and-leaf

plots, boxplots, etc., (Velleman and Hoaglin, 1981) and granularity (clumps,

"holes), outliers, and asymmetry ought to be noticed. Outliers need to be

tagged, and possible transformations considered, Of course, some outliers may

not be so prominent when we consider the multivariate nature of the data.

Transformations considered now may also be unnecessary later, but asymmetries, ,

outliers, and large changes of magnitude are clues that some variables may be

in the wrong units. In short, take a hard look at the raw iata. Do nothing

If you wish, but set up a list of t.hings to check as you go further.

The response variable, y, is often supposed tro be a random variable with

some probability distribution. If it has only two values, looks Poisson, 40

etc., do not try ordinary least-squares regression. You will get stupid

results. Consider other models such as the generalized linear models

discussed by McCullagh and Nelder (1983). The probability plotting techniques

discussed by Chambers et al (1983) are useful for checking these assumptions.

When a thorough univariate analysis has been done, it is time to consider

the bivariate (and eventually multivariate) nature of the data. Plots of y

versus X. are always worth making, especially for considering

transformations to straighten the plot and computing rough correlations, but

can be misleading if used to develop precise models because of the effects of '

other regressors. Bivariate plots of the regressors are also useful for

finding holes, outliers, etc., but the number of plots increases rapidly with

p. However, these provide the first clues to the fact that information in the

"design" or factor space may be spotty, clumpy, have holes, or be sparse.

44
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Unfortunately, we cannot do this well in higher dimensions--at least not yet.

A number of people are working on this (Chambers et al, 1983, Chapter 5).

Usually a tentative model or equation~comes with the data. While doing

our exploring we should see if the model is sensible. Possible modifications

should be noted for later consideration. It is always tempting to make g(x)

linear in some proposed coefficients (a so-called linear model). However,

g(x) may be quite different-clues to this effect should be noted for they may

require different approaches. The model could be nonlinear in the parameters

or perhaps a non-parametric approach is needed (Friedman and Stuetzle, 1981).

The diagnostics to be discussed below assume that, at least tentatively, the

model in (2) is considered reasonable. Diagnostics may open our eyes to

further problemsbut they cannot take the place of a good preliminary look at

the data, structural model (g(x) or, more specificallys X2) and stochastic.

model (distribution of y or, in some cases, c). When diagnostics point to

changes we should use these preliminary procedure. after making changes and

again apply diagnostics to see if we have improved our analysis.

PARTIAL RZGRZSSION8 AND PLOTS

Most of us are used to thinking about the least-squares estimates as

b (X- X)-XTY. (3)

However, it is often more instructive.to think about the estimated

coefficients in a different way. Denote the residuals found when y is fit by

all but the j th regressor by

Y- 12...(J- )(J+l)... p "Y.[j]'(4

5
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Thus y.[j] is the vector of least-squares residuals obtained by regressing y

thon all regressors except the j and Is often called the adjusted response

variable. Similarly, let X denote the residuals obtained by regressing

Xj on all of the remaliing regressors. These are called the adjusted

regressors. It is not hard to show (Mosteller and Tukey, 1977, p. 344) that

n
ixj.[j]Yi [jl

b. - i~l (5)S n 2
Lx.klkj.(jl

, k' j
thwhere xij.[jl is the i element of the vector Xj.[j] and Yi,[j] is

the ith element of the vector y.[j]. This formula should be compared to

,* that for simple linear regression through the origin. A great deal of

i Information about bj can be obtained by plotting y.[j, against Xj.[j]

for each j, These are called partial regresmion plots (or, in some cases,

adjusted variable plots). Useful references are Delsley, Kuh, Welsch (1980)

and Chambers et al (1983). Both of these contain interesting examples.

Some properties of these plots are:

(a) The least-squares linear fit to the plotted data has slope bi and

intercept - 0 (when j is not the intercept variable).

(b) The residuals from the least-squares linear fit are the final

multiple regression residuals, y-Xb.

(c) It Is relatively easy to see how individual data values influence the

estimation of bh.

(d) Often some Information about nonlinearity, heteroscedasticity and

unusual patterns can be obtained.

6
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An example of a partial regression plot is given in Figure 1. The simple

linear regression line is included and some interesting points have been

marked.

4,..

Until recently, partial regression plots vere thought to be hard to

obtain. Velleman and Welach (1981) show that this is not the case.

Let

T -1x xT
C-- (X lX) (6)

T
then b C y (7)

"n
and bcijyi ()

Using the normal equations and (5), we can show that

b i. l xij'i jjjy'
b. (9) -

n 2

The uniqueness of the least:-squares astimatei implies that

xii'[3] (10)¢iJ n 2

k1kj.(Jl
k*4gk~l,v ,,

or equivalently

kcl 0  )

kol

Furthermore, Mosteller and Tukey (1977) have shown that

y *[J] a • + b X (12)

where

e * y - Xb. (13)

I.....
7 I,,' *'.
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Therefore b, C, and e are all we need to get partial regression plots. A well-

organized regression program can obtain C very easily. There is no excuse for

not making these plots a part of every regression analysis. They are an

essential diagnostic tool.

COLLI3IAIIT

Before going further, it is advisable to get mome feeling for collinearity.

A quick way is to note from (9) that

o2
var (var(b.) *" (14)Sn

If the sum in the denominator is small compared to, Say) E x then xj has been

well fit by the other reSressor.. Since we are used to centering our data, we

often compute the squared multiple correlation of X on the other regressor@,

n 2 j .n xA.

j n -2-(xij-;j) .

- .th "
where x. is the j variable mean. Note that if we are interested in using

models with an explicit intercept rather than centered data, the denominator

2of R should not be centered. One statistic often proposed as a measure

of collinearity is the variance inflation factor, VIF, found from

VI, a 1 (16)

9 .
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If we just had a simple linear regression on X

y c + dXJ + C,

then

o2

var (d) * ' -
n2

Thus

var (b.) -var (d) • VIFJ, (17)

and we see that VIF measures the variance inflation due to the presence of

additional regressors.

The drawbacks of the above approach (VIP. large) are that it does not

tell us which regressors are involved or how they are involved in the

colline&r relation with Xj. A very useful way to get this information is

described in Chapter 3 of Belsley, Kuh, and Welsch (1980).

If collinearity appears to be a problem, it is wise to reduce it as much

as possible before doing influential data diagnostics. When the diagnostics

that follow suggest altering or setting aside data it is essential that the

new model be rechecked for collinearity.

4.

One of the preliminary steps for regression analysis that we have

discussed is the making of bivariate plots of the regressors. Generally, the

eye will notice outlying points in these plots. However, it is hard to make

higher dimensional plots and a variety of tools exist to overcome this

i0
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problem. One of the easiest to use measures a type of distance from x, the row

vector of regressor meanh, to each observation xi:

To' -1 -)T

(xi - ;)('x X) (X1  ).(B

Here X is the X matrix without the intercept column and with column means

subtracted off of the remaining columns. Similarly, (xi omits the

intercept element. Belsley, Kuh, and Welsch (1980) show that

hi-•-I, - T)(A)'(l - T (19) •

where

hi * xi(XTX) lxT (20)

is the diagonal element of the projection or hat matrix,

IT -1 T

H X(X X) x (21) ,4,.

so-called because

y a Hy .(22) I

Most modern regresuion programs nov compute hi and I would not use one that

failed to do so. 
i

K

Often we will want to hypothesize that x is possibly erroneous or

"strange." Then we may wish to measure the distance from xi to the rest of

the data. One useful way to do this is to compute.

d (xi - (i)l) X(T(i)) (xT (23)

where x (i) and X (i) are obtained by assuming that the ith observation did

not exist.

X4*



Since d, is related to Mahalanobis distance, it is not hard to show

(Belsley, Kuh, and Welsch, 1980) that

Both h, and hi/(1-hi) will prove to be useful in what follows.

Sand Welsch (1978) discuss many properties of his In particular,

0 < hi < 1 (or 1/n < hi 1 1 when an intercept is present) and E h = p so ,

that the average value is p/n. Let b(i) denote the least-sqaures estimates

obtained without using the ith observation. Then simple algebra, e~g. (32),

shows that

- xlb U (1 - h )xib(i) + hiyi. (25)
A

Thus, yi is a convex combination of the prediction xib(i) and the

observation yi. The ratio hi/(l-hi) determines the relative contribution of

each part, When hi is one, the ith observation completely determines . i and

i.i

There is no general agreement on when hi is "large." Hoaglin and Welach

(1978) argue that an individual h i should not be too far from a balanced
design (all hi a p/n) and call the ith observation a leverage point when "

hi > 2p/n (provided n > 2 p). Belsley, Ruh, Welsch (1980) show that when

the X (rows of X) are i.i.d. multivariate Gaussian, the distribution of

h /0--h 1  can be related to an F-statistic. This leads to a criterion

that calls attention to the ith observation if hi > 3p/n. Note that

these leverage criteria depend on p and n.

12



Huber (1981) uses (25) and sug8ests that when h. > 0.5, special
i

attention is called for and observations with hi > 0.2 should be noted.

These leverage criteria are independent of p and n.
4 Ii4..

A useful compromise between these two general approaches is to consider

hi, i-l,..•,r, as a batch of data to be analyzed by exploratory data analysis

(Velleman and Hoaglin, 1981). Observations with outlying values of hi would

then be considered leverage points. My own simple rule of thumb is to pay

attention when h > min (02.2 3pmn).

Note that if all of the data is replicated m times, then the new value of

hi is the old value divided by m. Cut-offs that depend od the sample size

(such as 3p/n) adjust for this so that replication does not affect those

points we determine to be outlying. This seems to u3 to be a useful property,

especially when h is related to distance measures.

It is also possible to compute the contribution of the individual

regressors to the leverage of each observation. Let .

h w h(J + nIj (26)

where h j is the vector of leverage values when X. is omittad from the

regression model. The partial leverage, nj can be found from

2
£x•

nj0n2 (27)

k-l ki.l ],i"i

which is the leverage of the tth point in the partial regression plot for

bj, Data points with large partial leverage for a regressor can exert an

13
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undue influence on the selection ox that regressor in most automatic regression

model building methods. For some examples, usee Henderson and Velleman (1981).

While looking for leverage points is a relatively new tool, examining

various plot's of the residuals, ei, is not. Surely residuals should be

plotted against index (or time), against fitted values, against proposed new

regressors (it is best to adjust the new carrier for those already in the

model by using the residuals from xnev regressed on the current model),

etc. Probability plots should also be made. An excellent discussion is

contained in Chambers et al (1983).

We feel that the residuals should be properly scaled. Since

var (ei) -(1-h 1 ), two useful choices are the internally studentized

residual

ei(28)

and the externally studentized residual

e = e (29)

s(i) 1-hi.

where s is the standard error of the regression np i -x b) and
i1l

s(i) is the same but with the ith observation omitted. A simple formula I

relates a and s(i):

e22 -(n-p-l)s
2 ( e1  .44

(n-p)s2 - i) + 1 (30)
(1-h.

,- 9,
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Under the usual Gaussian error assumptions, e has a t-distribution with

n-p-1 degrees of freedom. If a dummy variable with zero in all positions

except for a one in the ith position is added to the current model (X), then

ei is a useful diagnostic for seeing if there should be a shift in the

intercept for the ith observation. Further details are contained in

Belaley, Kuh, and Welsch (1980).

Another form of residual is often useful. The predicted residual is found

by computing

el
y. .xhb)i•
1i i b~) (1-h) (31)

Iioaglin and Welsch (1978) have noted that when (31) (s scaled by its standard

error, the result is just e•.

WAS= 01P IT'LUI,,CE

Looking for leverage points and examining various types of residuals form

an important step in regression analysis. However, we would like to know if

an observation is hAving a disproportionately large impact on our analysis.

An observation is called influential if its deletion wok .d cause major changes

in estimates, confidence regions, test and diagnostic statistics, etc. Usually

influential observations are outside the patterns set by the majority of the

data in the context of a regression model (including the structural model,

stochastic model, and fitting procedure). Influential data usually arise from .

errors in observing or recording data, structural model failure (for example, K

nonlinear instead of linear) and legitimate extreme observations. Deletion ise

a way to find procedures to measure influential data. Data should not be

a.•..
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deleted because they are influential, but should be flagged and carefully

examined. Alternative fits or forecasts may be needed, one with and one

without these data. Judgmvnt or information external to the data will often '

be necessary.

There are many ways to measure influence. Perhaps the most common is to

bt th 'Ith
think of all of the data but the i observation as "good" and the i as

potentially "strange." We want to find an influence function or measure to

see if the ith observation really is a cause for concern. A very useful

influence function is

T -1 T
(X X) xlei

b-b(i) u - (32)

T -1 T ,'

X X) xi(y - xib(i)) (33)

or for each entimated coefficient I.I,

x(Yl.X b(i)) ;".

b -b M() -irjy[b] (34) i)"(n 2
k x1 kj.[j]

This can also be stated in terms of (11) rather than adjusted variables.

It is often convenient to scale this measure in some way. Since we ore

usually interested in changes in the estimated coefficients that are a

substantial fraction of the stochastic variability of b, we divide by the

standard error of b.. To estimate the standard error we use witXhX)"1
J

c s(i), since we would like an estimate of a that is not subject to the

16



p�,. , •k b .?, 'o • . . . . . . ..-. . .

,th
"possibly erroneous" i observation. Other reasons for using s(i) are

given in Welsch (1982). All this gives us

L.%
(b j-b] (i))(3)•

DEA.. - ;'--~--- (35 -

ji

x y-K b(i)
_______ ii(36)

k1

The first term is the square root of the partial leverage (Q7) and the second

part is related to the predicted residual (31).

There are three basic ways to decide when IDBETASI are large. The fir t

is to note which ones are larger than, say, 0.5 or 1. That is, setting aside

one obaervation causes a 0,5 or 1 standard error change in the estimation of

a A second method (Beisley, Kuh, and Welsch, 1980) uses the fact that

when ci is constant for all i and the hi are balanced,

n )
I (DBETASiJ) 2 1. (37)

i-i

When IDBETASijI is gireater than, say, twice the average value 1/•n,, we take

note. A practical rule of thumb is to use min (0.5,2//n).

The third approach in to 'look at the DBETAS via exploratory data analysis

or contour plots. For a fixed j, DBETASij consists of the product indicated

in (36). We plot the partial leverage portion on the x-axis arnd the predicted

residual part on the y-axis. Contours of constant influence x.y - c are also

plotted. Figure 2 shove iuch a plot for c = 0.5, 1.0, 1.5, etc. The symbol +

17
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denotes a positive DBETAS and A a negative DBETAS. Some potentially

influential points have been tagged.

Often we are more interested in predictions than coefficients. A

prediction is just a linear combination of the estimated paramters, say,

T T T
i b. It is natural to compare ATb to I b(i) and scale with a

measure of the standard errors of the fit, s(i)vlj. However, we often do ['

not know A so we look for the worst case

UT b AT bi)2 T T -~

@up (= b .b i * (b-i)) X X(bbi) (38)
2 T~) (X1X)- 11 .2

. hi (*)2 (39)
1-h 'i'

From (25) we also note that the difference between the fit, xib, and the d

predicted fit, xib(i), is Just hisi/(l-hi). When scaled by a measure

of standard error of the fit, s(i)o, we get

x b-x b(i) ,hi *

DFITS" w (i " "•i e1 (40)

which is the square root of (39). Notice that DFITS is the product of a .

leverage factor (24) and the externally studentiled residual (28). .

Again, there are a number of approaches to deciding when IDFITSI is

large. We can use a fraction of standard error, like 0.5, 1, etc., or note

that

n
Z DFITSi p (41)J

when hi p/n. We do not want any observation to stray too far from the

average influence so we would single out observations with IDFITSil > 24p/vn."

A reasonable rule is to use min (1, 2'p/) as a cutoff,. Cook and Weisbeir g4.,
19
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(1982) develop a statistic similar to DFITSB, namely

D - (42)
i p 1 -h i s (1-hi)-

They suggest that D2 may be considered large when it exceeds

F(5) or, approximately, one. This seems to be an undulyFp~n-p

conservative cutoff in practice. D is also troublesome because it uses

a instead of a 2 i) and hence is not robust to errors in the ith

2
observation. Seo Welsch (1982) for further discussion of D.,

1/2
We prefer to look at contour plot@ with hil-hon the x-axis

and Ie*I on the y-axis. Constant influence contours may be plotted as *

before. Figure 3 provides an example.

Cut-offs based on sample size adjust for the fact that as sample size

increases, variance decreases so that bias caused by erroneous data becomes

the major factor in determining the mean square error. To control this bias

relative to the decreased variance requires cut-offs that are reduced as

sample size is increased.

Of ten in inference we are interested in confidence intervals or regions.

"A confidence region consists of a center, a shape) and a scale. For example,

in regression a confidence region might be all a satisfying

(b-A)TxTx(b-l) < a
2

where a in based on the F statistic and p. Here b is the center, X Tx is the

shape, and a2 is the scale.

I.i
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So far we have looked at diagnostics for the center, b. To see what .

T th
happens to X X when the i observativn is considered suspect, we can

loo~k at:

T iXj)(T -1
trace [X (X)X(i))(X x)"1] p-h 1  (43)

or a ratio of volumes

det[XT(i)X(i)]

dot (XTX)

These equations just provide more reasons to look at hi in its own right.

As for scale, we note again that

2

(n-p)s 2  - (n--i () +()
i•',

so that 11

~•,)'2 (01) 2 •

n-p

Again we have already looked at ej extensively.

These measures can be combined by looking at the ratio of covariance

matrix determinants.

O O de 2(i)(XT(i)X(i))"1
COVRATIO 2~ T 145)I

det a (X X)

. [&(i.2p 1 (46)

It'
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Contour plots are possible here as well. Velleman and Welsch (1981) note that

hi and ei cannot vary completely independently since

2
h e+ < 1 (47)

(n-p)s 2

and, of course, when hi - 1, ei - 0.

An important point to note in that observations with large hi decrease

the size of a confidence region while observations with large Isel
'he

increase it. Our goal should be to insure that we are alerted to potentially

influential observAtions. As we can see from the above, influential observa-

tions can be both useful and harmful. How we treat them will depend nn the

purposes of our analysis and their relation to the rest of the data and our

models. The best rule of thumb is that there may be more than one good and

valid analysis of a data set. Sometimes an analysis with an influential

observation and one without are the only way to adequately summarize the data.

* GKURIJZZD• LII~U~h iioinud

When the response variable y is Bernoulli, binomial, Poisson, etc.,

generalized linear models (GLM) are appropriate. A detailed discussion is

contained in McCullagh and Nelder (1983). Many of the ideas discussed above

can be carried over to these models as well. Basic references are Pregibon

(1979, 1981).

"* 23
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The essential idea is to find an influence function (b-b(i)), for the

parameters of the model. In the GLM case, this cannot be done exactly since

the computation of b requires the solution of a system of nonlinear equations ,'
,r*.

via iterative procedures. However, b-b(i) can be approximated, usually by

taking one iteration away from b (the fully iterated solution) with the ith

observation removed in an appropriate way. Various kinds of residuals can be

defined as well as useful plots.

This is an extremely active area of research at the preient time,

especially generalizations to survival analysis (Hall et al, 1982),

proportional hazards and censured data (Cain and Lange, 1984), Cox models

(Storer and Crowley, 1985), matched case control studies (Pregibon, 1984, and

Moolgavkar, et al, 1984) and logistic regression (Johnson, 1985). The

bibliographies in these papers provide a good overview of work in this area,

INM.UIUTIAL 8U•$18T O DATA 4,

If there are two or more outliers in a clump, then influence functions

based on setting aside one of the observations will not work well because we

will see little change until the entire clump is set aside. The methods

discussed above generalize to subsets of data (Belsley, iCuh, Welsch, 1980;

Cook and Weisberg, 1982; and Welsch, 1982), but very large amounts of

computation are required.

To overcome the computational problems, we have developed a technique

called bounded-influence regression (Krasker and Welsch, 1982). A bounded-
•4

influence estimator can be viewed as a procedure to find data-dependent
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weights (for use in weighted least-squares) so that no small subset of the

data is overly influential. The weights and related statistics then become

useful diagnostic tools. Examples and associated contour plots are given in

Krasker and Welsch (1983). Computational details are discussed in Peters,

Samarov, and Welsch (1982).

Another promising approach uses cluster analysis to reduce the .44 ,

computational burden. These ideas are explored more fully in Gray and Ling

(1984). Kempthorne (1984) combines clustering with direction searches to

attack these problems. V

These ideas can be extended to generaliabd linear models in a number of

ways. Some basic references are Samuels (1978), Krasker (1979), Reid (1981),

Reid and Crepeau (1985), Pregibon(1982), and Accomando and Pagano (1983).

Much more work needs to be done in this area.

"a .i%,

COMPUTATION

Computational details of many of the above methods are treated ion Velleman

and Welech (1981). They also discuss how to use package programs such as SAS

and MINITAB to obtain various diagnostics. The plots used here were made on ,.

the TROLL system, a large data analysis end modeling system available under

license from M.I.T.

There in no reason why good diagnostics should be omitted from a packaged

program. They are essential in my view. We can all demand that they be a

part of the new generation of software for personal computers and

25
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workstations. Diagnostics are particularly effective on these devices because

graphical tools are readily available.
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OBJECT CORRELATION IN MULTIPLE SCENES

Robert E. Green
Programs Management Office
Instrumentation Directorate

US Army White Sands Missile Range
White Sands Missile Range, New Mexico

ABSTRACT. Recent changes in the character of missile systems has created
the situation where a large number of objects may be located in a relatively
small space volume. These randomly located objects are identified by photo-
graphing the space volume from two or more different locations. The total
number of objects in the space volume is unknown and the number of objects in
the intersection of any pair of scenes is unknoun. The objective is to identify
the objects that are in the intersection of two or more scenes. It is also
desired to correlate the objects identified in two or more sequential observa-
tions.

I. INTRODUCTION. The purpose of test range instrumentation is to collect
data that can be used to evaluate the performance of the object being tested.
Photography has been a standard method of collecting performance data since the
very early days of missile development. A common method of using photography
to collect performance data is to record sequential photographic images from a
telescope mounted on a precision tracking mount. The direction of a line con-
necting the location of the tracking mount and the target is determined by
correcting the direction the mount is pointing (azimuth and elevation) by the
amount the target is offset from the center of the field-of-view of the tele-
scope. This yields azimuth and elevation angles for the target. If two or
more telescope equipped tracking mounts observe a target, then the position of
the object in space can be estimated by computing the point that minimizes the
sum-of-squares of the distances from the lines defined by the azimuth and
elevation angles from each mount.

Recent developments in self-contained munitions have created situations
where large numbers of objects are expected to be in the field of view of two
or more telescopes. It is possible to estimate the direction of the lines
connecting the tracking mount and each target detected in the field of vlew.
A large number of objects in the Eield-of-view tends to complicate the process
of producing data that can be u:sed to evaluate the performance of the objects
being tested.

II. Object Correlation. Techniques for performing two types of object
correlation are desired. First, an efficient technique for identifying the
location in space of the objects in the field of view for a single scene. The
images observed in a photograph may not represent a single object since It is
possible that two or more objects may share the same direction from an individ-
ual mount. Due to differences in aspect angle, range, or pointing direction,
the nbjects photographed from one mount may not all appear in the field-of-view
from another mount. An algorithm for this application must consider these
factors.

•fter the objects have been identified at each individual point in time,
it i. necessary to correlate individual objects as a function of time in order

31 Preceding Page Blank



to estimate velocity. We are given a large number of objects traveling in
different directions and at different velocities. We sample the location of
these objects at discrete intervals In time. The number of objects identified
at each time interval may be Incomplete. A procedure is needed that correctly
identifies each individual object in each scene for the purpose of estimating
ita flight performanct. Bounds on the expected range of velocities and direc-
tions of the objects of interest can be assumed.

III. Summary. Methods that can be used to develop estimates of the flight
performance of a large number of objects from time sequential observations oft

space position as sensed by photo optical techniques is required. These methods
need to be sufficiently robust to function when some of the data is incomplete.

!F
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AN INTRODUCTION TO FAILURE MODE STRATEGY AND EFFECTIVENESS FACTORS 4.

Larry H. Crow
US Army Materiel Systems Analysis Activity

Aberdeen Proving Ground

Abstract

The growth potential for a system design Is defined as the maximum
reliability that can be attairi', for a particular management strategy. The
management strategy toward reliability places failure modes into two groups,
those that are fixed when seen and those that are not fixed when seen. The
management strategy also determines how effective the fixes are. Consideration
of the growth potential focuses attention on the Impact of not fixing certain
failure modes and quantifies the management strategy and engineering effort
in terms of attaining the reliability objectives. a

In this paper, we discuss a management strategy framework for considering
the growth potential and show that a number of other reliability values of
interest during a development program can also be addressed within the samie
framework. These various reliability parameters are all shown to be related
and this perspective can be very useful in the planning and management of a
reliability program.

Introduction

In the development of a complex system, the Initial prototypes will
generally have reliability problems. Oonsequently, the system is typically
subjected to a development testing program to find problems and incorporate
appropriate corrective actions. This process may Involve making reliability
predictions and constructing planned growth curves. For the planned growth
curve, an initial reliAbility value must be detbrmined. In addition, such
terms as inherent reliability, growth potential, the requirement, and current
reliability values all play a role In the design and reliability growth for
the system.

In this paper, we give a practical real world structure for putting
into perspective initial, inherent, predicted, growth potential, requirement,
and current reliability values. All of these values are shown to be related
in terms of parameters which are functions of the design strategy, the manage-
ment strategy for failure modes, and effectiveness factors. When used with
reliability predictions and Failure Modes, Effects and Criticality Analysis
(FMECA)i these results are useful for initializing and constructing planned
growth curves, for setting realistic requirements and for developing a viable
management approach to reliability.

Failure Mode Strategy

The reliability values of Interest in this paper are all directly related
to the system design strategy and the reliability management strategy. Iii
this section, we discuss the management strategy in terms of failure miode
classification and the effectiveness of the fixes.

33



P., V.z 47 ..z--,

Among other things, the reliability management strategy determines what '"
problems seen during test will or will not be fixed. The management strategy
also determines how effective the design fixes are and when the fixes arem.,
incorporated into the system. Although the management strategy toward reli-
ability growth may not be clearly defined or formally stated, it will in
fact exist. The management strategy is determined by how management acts in
regard to reliability. The system design and management strategy will deter-
mine if it Is possible to meet the reliability requirement. The management
strategy should be considered early in the development program. In addition,
the impact of the management strategy( on reliability can be measured from
the test data and changed if necessary. Numerical examples are given in a
later section for evaluating the management strategy.

When the system is tested and failure modes observed, management can make
one of two possible decisions, either not fix or fix the failure mode. There-
fore, the management strategy places failure modes into two categories called
Type A and Type B modes. Type A modes are all failure modes such that when
seen during test no corrective action will be taken. This accounts for all
modes for which management determines that it is not economically or otherwise
justified to take corrective action. Type B modes are all failure modes
such that when seen during test a corrective action or fix will be attempted.

The management strategy, therefore, partitions the system into an A part
and a 8 part. Each part has a corresponding failure rate and mean time between
failure (MTBF), See Figure 1. S.

( ( 4...
TYPE A •,

•.,'

Figure 1. Management Strategy FbrtitionSthe System into Two Parts,

[ FInitial Reiailt "i

At the4 beginning of development testing, the initial system failure rate
.is.,

~Init +
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where

- that failure rate due to type A failure modes.

. that failure rate dun to type B failure modes.

See Figure 2. The actual value oftm is determined by the system design.
The partition Into the A and B par s s determined by the management strategy.

TYPE B

~TYPE A•

Figure 2. Parition of TotalI System
Failure Rata. I

The system MTBF is 1/Failure Rate. The Initial MTBF Is generally low
relative to the requirement and the objective is to achieve reliability
growth through finding problems and taking subsequent correction actions.

Current Relitability and Effectiveness Factors,

Reliability growth Is achieved by decreasing the fallurert '.
The failure rate M for Type A failure modes w111 not change. Wit- h--h
management strategy, reliability growth can only be achieved by decreasing
the Type 8 failure rate •.it is also clear that, in general, we can
only decrease that part oTt-he Type B mods failure rate that has been seen
during testing. See Figure 3.

It is very important to note that once a Type B failure mode is In the
system ittts rarely totally eliminated by a corrective action. After a Type
8 mode is found and fixed, a certain percent of the failure rate will be
removed, but a certain percent of the failure rate will generally remain.

3 
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A fix effectiveness factor (EF) is the percent decrease in a problem
mode failure rate after a corrective action has been made. A recent study
by the US Army Materiel Systems Analysis Acti, ,iy on EFs showed that an
average EF d was about 70 percent. That is, on the averago about 30 percent,
i.e., 1-d percent, of the Type 13 mode failure rate remained in the system
after a corrective action.

l'I.

TYPE B
UNSEEN / TYPE B

SEEN

TYPE A

Figure 3. Systern Failure Rate Partition atjj End of Test..

Management controls the resources for corrective action. Consequently,
fix effectiveness factors are part of the management strategy. For the Type
3 inode failure rate that has been seen during development testing. we will
remove d percent and leave 1-d percent in the system. For illustrative pur-
poses, we will frequently use an average EF d to be 70 percent in this paper.
Therefore, after the corrective actions have been made, the current system
failure rate consists of the Type A mode failure rate plus the failure rate
for the unseen Type B modes, plus 30 percent cf the failure rate for the
Type 6 nodes which have been seen. See Figure 4.

An important management question is: Car the requirement ever be attained
with the way we are doing business i.e., with the management strategy? If the
requirement can be met, then usually we alse want know how long it will take.
This carn be answered by addressing the growth rate.
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30%.

K 4

TYIPB

SEEN

7. %

Figure 4. Systm Failure Rate After-
Corrective Actions.

Growth Potential and Requirement

The growth potential is the maximum reliability that can be attained with
the system design and reliability growth management strategy. The growth
potential will have been attained when all Type B failure modes have been
fnknd and a fix Incorporated into the system. For the system design and
management strategy this is the limiting reliability. The growth potential
reliability 1ny never actually be achieved in practice.

Figure 6 portrays the growth potential for a system with an average EF
of 70 percent. The growth potential failure rate, assuming an average EF of
70 percent, consists of the Type A failure rate plus 30 percent of the Type
B failure rate.

The Initial failure rate M for the s stem at the beginning of develop.
ment testing consists of the failure rate for the Type A modesynd the
failure rate M for the Type B modes. Tha is, MInit " + +

The growth potential failure rate Is the most that the Initial failure rate can
be reduced with the management strategy. It is the best failure rate attainable.
For an average EF of .70, the growth potential failure rate is expressed by

GP'- + (.30)
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Figure 5. Failure, Rate Growth Potential.

The Initial MTBF and the growth potential MTBF are shown in Figure 6.
An Important consideration Is whether or not the requirement is below the
growth potential MTBF. If the requirement Is not below the growth potential,
then the requirement cannot be attained w'ith the current system design and
management strategy. The methods presented in Ref [23 may be used to easily
estimate the.growth potential from test data.

-- - GROWTH POTENTIAL

M REQUIREMENT ?O
T

F
+ INITIAL

*: TEST TIME

Figuye 6. Initial, Requiremert and Growth
, tential MTBF.
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Example

Suppose a system is tested for 400 hours with 42 failures. According
to the management strategy, 10 failures are due to failure modes that will
not receive a corrective action. That Is, these are Type A failures. Also,
according to the management strategy, 32 failures are due to failure modes
that will receive a corrective action. These are Type B failures. See
Figure 7.

B

32A
10

i 76%

Figure 7. Management Strategy for
Type A and B Modes.

We next estimate the Initial failure rate and the failure rate and the
failure rates for the A and B partition.

II
The estimates for the Type A and Type B failure rates are the respective

number of failures for that type divided by 400, the number of test hours.
Consequently with the above management strategy the Type A failure rate is

. 10/400

and the Type B failure rate is

* 32/400.

The estimate of the Initial system failure rate is
M Init w 32/400 - 42/400 or an estimate of the initial MTBF of 9.5 hours,.

If we assume an average EF of 70 percent, then under the above management
strategy the growth potential failure rate is estimated by

[GP u + (.30) M

or
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MGP * 10/400 + (.30) 32/400.

This gives an estimate of the growth potential MTBF of 20.4 hours.

With this management strategy and these data, the initial MTBF of the
system is estimated to be 9.5 hours and the very best MTBF that may be attained
is estimated to be 20.4 hours. If the requirement is less than 20.4 hours
then there is the possibility of it being attained. However, if the require- A
ment Is greater thin 20.4, say, 25 hours, then it is very unlikely the goal
can ever be reached with the present management strategy, regardless of how
much testing is conducted. See Figure 8.

GROWTH POTENTIALA
20A ..... .- -
M
T

F
INITIAL

Figure, 8, Estimated Initial and Growth
Potential MTBF.

If a requirem.,it of 25 hours MTBF Is to be attained with the system
design, then the management strategy must be changed. This would entail fix-
Ing more problems, i.e., increase the Type B modes, and/or increase the ef.
fectiveness of the fixes. However, It is noted that an average EF of about
70 percent appears to be typical for many types of systems, although individ-
ual EFs may be larger. Therefore, a very large average EF may not be war-
ranted.

Example

Suppose that an average EF of 70 percent is assumed but we desire to
change the management strategy so as to increase the growth potential MTBF
above 25 hours. Aqain, suppose that the system was tested for 400 hours
with 42 failures. With the new management strategy, 39 failures are due to
modes which will receive a corrective action, i.e., Type B modes, and 3
failures are due to modes which will not receive a corrective action, i.e.,
Type A modes. See Figure 9.

I,, *
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Figure 9 Management Strategy for Type
A and B Modes.

The growth potential failure rate for this management strategy Is estimated
to be

CCGP - 3/400 + (.30) 39/400

or an estimated growth potential MTBF of 27.2 hours. This is a valid estimate
of the growth potential if thIs management strategy is maintained, This
includes classifying, in the long term, at least 93 percent of the failures
to Type B modes 'and no more than 7 percent of the failure to Type A modes.
Also, an average EF of at least 70 percent must be achieved.

It is important to note that the growth potential does not estimate the
current reliability - it estimates the maximum reliability that will be achieved
when all Type B failures modes have been found and fixed by a corrective action.
It is showned in Ref El[ that the current failure rate, after corrective action
of Type B modes seen during test, equals the growth potential failure rate plus
a correction term for unseen Type B modes still In the system. An estimated
of the current MlTBF utilizing EFs is obtained by applying the projection model
and methods discussed In Ref El] and Ref [2).

Example

Assume again the situation in the first example. In this case, 32 failures
will receive fixes at the end of 400 hours of testinq. The various failure
times for the Type A and Type B modes in this example were generate by com-
puter simulation and discussed in Ref El). In Ref E1], these data wre used
to obtain an estimate of 14.7 hours for the current MTBF. See Figure 10.
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GROWTH POTENTIAL
20.4 A.-. ,

S~~~14.7 !,:;

CUR RENT

9.5 INITIAL

TEST TIME 400 MRS

Figure 10. Estimated Initial, Current and
Growth Potential MTBF.

Inherent and Predicted

The Type A failure modes are determined by the management strategy. The
Type A group accounts for all failure modes for which management determines
that It Is not economically or otherwise Justified to take corrective action.
Economically justified is, of course, relative to the design strategy. For
example, what is economically justified for one car type may not be for an-
other, depending on the respective design strategies and objectives.

An inherent failure mode will exist whenever the failure rate for that
mode cannot be economically reduced further by corrective action. An inherent
mode failure rate will remain in the system. Ideally, the group of Type A
failure modes should consist only of inherent failure modes. If the Type A
group includes modes which are not inherent - i.e., can be economically cor-
rected - then, this is indicative of bad reliability management. Also, if the
failure rate for the initial group of inherent modes at the beginning of reli-
ability testing is large relative to the requirement, then this indicates a
bad system design for the requirement. When all system failure modes are
inherent - cannot be economically reduced further - then the system has at-
tained its inherent reliability.

A valid reliability prediction should generally be expected to address
the inherent system reliability. This is very important because of the rela-
tionship between inherent reliability and the growth potential reliability.
If the management strategy is sound such that all observed failure modes
which are not fixed are, in fact, already at their Inherent failure rates,
and those failure modes which are fixed have EFs that reduce their failure
rates to the inherent, then the growth potential failure rate equals the
inherent failure rate. This observation can be very useful for developing
planned reliability growth curves. A,"
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Conclusions

In this paper, we have discussed the initial, current, growth potential, A' t
requirement, inherent and predicted reliabilities and their relationships in
terms of the design strategy and management strategy for the system. In par-
ticular, the initial failure rate is partitioned into two parts.

M. Init u E + M

For an average EF d the growth potential and initial failure rate are related
by

DGP - + (1-d)I

or

'DGP 1MIniL - d(E.

In addition, the current system failure rate, when all Type 8 modes which have
been seen during test have received a corrective action, is related to the qrowth
potential by

CUR " [GP + correction term for unseen Type B modes.

In term of MTBF, the requirement must be below the growth potential MTBF if N.
it is to be attained. Also, the predicted reliability should generally be ex-
picted to address the inherent reliability. Therefore for planning purposes,
we may equate the two, i.e.,

MInh r DPred. .

In general, the i-herent MTBF will be greater than the growth potential, depend-
ing on the management strategy. Under a sound management strategy they will be
the same, i.e.,

TInh - GP..

Therefore, it follows that given a realistic prediction and assuming a sound
management strategy, then

L•GP - MPred.

These relationships are very useful for developing planned reliability growth
curves and for evaluating the reaiism of attaining the requirehient with the
management strategy. Figure 11 summarizes these relationships.
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Determination of the Design Allowable Value'

Using Extreme Quantile Modeling

Donald Neal, Mark Vangel, and LucianoeSpiridigliozzi

Army Matorials and Mechanics Research Center

Watertown, Massachusetts 02172

A B S T R A C 'T

This paper describes a methodology for obtaining the A and B,,

material design allowable values using an extreme quantile

modeling process. The allowables represent a value determined

from a specified probability of survival with 95 porcent

confidence in the assertion. The survivalprobabilities are .99

for the A and .90 for the B allowable. The required

representAtion of the small portion of the data in the left hand

tail of the distribution was obtained from the following models:

the two parameter Weibiell, two parameter exponential and the

Bootstrap method.

Development of the exponential model is presented in detail.

The primary effort involved determining an unbiased estimator of

the LCB for the exponential sample order statistic corresponding

to the required quantile value. This was obtained in terms of

the LCB of the same ordered value from a uniform distribution and

the MLE of the exponential parameters.

Applying the Weibull censored data analysis presented' in

Lawless [1) provided an effective method for weighting the lower

ordered values where at least seventy-five percvent right

censoring wah considered. The Bootstrap (23 method was applied

in order to obtain the variance at the one and ten percentile
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values. In the case where data was limited or contaminated an
extrapolation process involving an extreme value model was

introduced. Excellent correlation was obtained from among all

three models.

INTRODUCTION

The inability to obtain exactly the same structural properties

from all spevimens obtained from a manufactured material results

in a relatively large variability in strength measurements when a

large number of specimens are considered. In the case of

designing an aircraft structure it is required to

design such that a minimum stress value existo in critical K
locations and these values do not exceed the minimum guaranteed

material properties (strength). Obtaining minimum strength values
will reduce possibility of some production component.s containing
weaker material than that from the laboratory test element. This
guaranteed minimum strength value is defined as the design
allowable by aircraft design engineers.

Usually the measured value is considered acceptable in

estimating th6 population parameters for predicting population

percentiles. In the case of the design engineer it is advisable

to have a prediction which will determine the accuracy of the 7.

p~rcentile estimate at a high degree of statistical confidence.

This is the correct interpretation of an allowable value. For

example, certain military standards, eg., MIL-HDBK-513] reqdtre
material property data to be presented on an A or B allowable

basis. A and a allowables are defined by the probability

statneent providing' a 95 percent confidence of the assertion that

probability of surviving the A allowable value is (.99 and <.90

for the i allowable.
At4MRC is involved in the development of a statistialS chapter

for the MIL-17 HDBK on composite material In aircraft structural

'*sign. The chapter will include methods for determining the

"*sign allowable values. The inability to identify the proper

statistical model from limited or multi-modal data motivated ths

authors to find new robust models. I
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This paper presents original methods for obtaining an accurate
measure of the above mentioned design allowables involving lower
tail modeling. Breiman, Stone and Gins [4] have discussed the
difficulties existing in model identification when'very small
tall probabilities are required. This is 'the result of parameter

estimates that usually are obtained from data in the central

portion of the distribution where most failures occur leaving the

tail region limited in representation. This Is unfortunate,

since the relatively small amount of data in the tail region is

of prime importance to the allowable computation. The lower tail
modeling presented in the paper avoids central region modeling by

modeling lower ordered values of the distribution. The
exponential and Bootstrap methods involve truncating the tail.

The W*eibull model uses a censoring process for the high ordered
strength values.

When small samples or multi-modality prevents reasonable model
identification it is necessary to either apply conventional

non-psrametric methods or devise some scheme similar to those
kdvocate3 by the authors. The primary difficulty in the extreme

quantile modeling technique involved determining tolerance bounds
on the quantile values in the allowable computation.

The exponential extreme guantile LC9 Estimator

Breiman, Stone and Gins introduced the exponential extreme

quentile model which is the foundation of our research, The

method for estimating the LCD of an extreme quaritile presented

here, however, was developed by the authors, h Monte Carlo

investigation of the original (Breimanget.al.) LCB estimator
disclosed a bias of about 3% when sampling from an expLnential

distribution. Since an exponential distribution satisfies the

extreme quantile model exactly, it is desirable that the LCR

estimator be unbiased in this situation. This paper presents a
new LCD estimator which is unbiased when the underlying

distribution is exponential.
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Consider 8, sample of n independent, identically distzibuted •Sva•i •bles from the two. parameter, exponential distribution •'

X •' 'r .... i
•,' •

DeElna the lower t•ll as I}z•,•
{x(•.), xlz) , ... , x(.)), m • n/2,

where Xlj) is the Jth ssml•le erda1: statistic. •seumlng that i•',i,•

Flg•,a) Is approxlmstely sere. the Joint densltv of, the lowex '•!•
talZ values may be spproximste• as n •,:•!

S•. . (2)
• ,•(•-X•)/, (•.,-{•-xl/,) ,4

fat •X(nl,...•X(1). Based on !:he lower tall values, the maximum •

likolihoo• estimators of the oxponentia• parameters are •;,•,•I

_ Xls) ÷ k •nln/a)

where a has been •eigh•ad with m-1 rather than n in erda= to •--

yield an unb•ssed estimator. •he nexi•um likelihood estins•o= of
the qth quantlle Xq..O< q 11. iS[•,i.•l'•i



This is obtained by solving V(xq ITFa) for K and replacing
parameters with their MLZ's. The lower 95% confidence bound on
x with q nei and queol determines the B and A design allowables'
respectively.
if the quantile'o'f interest corresponds to a sample order

statistic, then the true lower confidence bound on the quantile
may be obtained by applying the inverse probability transform to
the 1.03 of the corresponding order statistic from a uniform
distribution; it follows that for this situation the true
allowable may be readily obtained.
in what follows, we have restricted attention to the 5,

allowable, i.e. the lower 95% tolerance limit on the M9 point,
Consideration of the A allowable (tolerance, on the 1t point) may
be made in a similar manner. Further, we have considered
primarily samples of site 19k for kc integer, since* i this case
the required limit corresponds to the LCB oa, the kt h order
statistic,
Let XIO*x be lid F(.iTra) as in equation 1. The density of

the kth order statistic is

and the true B allowable may be expressed as

With change of variable

-**(T-0)/a 
I

Ub o ( - b /(7)
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equation 6 can be written as

z O-:unkl-ukldu .05. 0S)

The upper limit on the integral is therefore the lower 5% point
of the Beta(kn-k+l) distributiong i.e.:

k-(

goo

The allowable estimator

X - Xcm) ÷ IIn(n)/n)

may be obtained from equation 7 by replacing parameters with

their MLI'o.
Since the MLS's are unbiased in this case, we have derived an

estimator which will provide unbiased allowable estimates when
the underlying distribution is exponential. this estimator is
computationally very simple; the percentiles of the bets adf
(equation 9) are easily obtained on a computer. We have, for
ease of reference, c.led this new estimator the reduced bias

estimator, or 353.

Monte Carlo Investigation of Reduced Siams Estimator

A Monte Carlo study using the two parameter Weibull
distribution was performed in order to provide a preliminary

assessment of the RD3. lince the problem of determining
allowables is particularly acute for small samples, we
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considered sample sizes of il, 2gand 30, with tail sizes of 3, 6

and It respectively. The Weibull shape parameters (a) considered

are in the range 2 < a < lb61 a range of values consistent with
those expected from test zesults on most materials. This

investigation in summarized in rigure 1.

The exponential tail allowable estimator is a linear

combination of the sample order statistics. For the order

statistics of a Weibull sample, the mean and covariance matrix

may be determined exactly [5). Unfortunately, the

covariance matrix is quite complex, therefore a simulation was

used to estimate the variance of the allowable estimator from

Weibull samples.

The exact expression for the mean of the kth order statistic is

(11.1/5)

.(-~~ 11) Y

Although equation 11 appears to be relatively simple to evaluate,

machine roundoff error prevented computation of the sum. the

reason for the difficulty is that eisuation 11 is proportional to

the (k-1)at backward difference of (1/n)(1÷/S) that is

(1.1/ •)

too (12)

where v is defined by

Vf (x) N f(x-1) -f (x)

The difference operator may be expressed in terms of the

derivatives of the function and Stirling numbers of the second

kind (6].

The results of the Monte Carlo study are presented In figure 2.

The estimated bias is expressed as a percentage of the allowable

estimate. As a measure of the variance, the estimated 9O%
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confidence Interval is also given as a percentage of the
estimate. These results indicate that the bias is

unacceptably large for small shape parameter but decreases
sharply as the parameter Increanese This is also true for the
confidence Interval &a a percentage of the estimatoe. The mean
square error decreases with increasing sample mise.

In Figure 3# the estimated 9 allowab.e for the Weibull
distribution to plotted vs the the shape parameter. Note the
vioarly Vertical slope of the curve for small a. The estimated
allowable curve agrees closely with the true curve over the
entire range; the distance between the curves measured along a
normal is always small. When measuring the bias and confidence
for small a, we are cutting the curves obliquely in a region of
rapid change in the allowable with increasing shape parameter.

In order to compare the RID method, a standard nonparametris
estimator was applied - the first ordered vilue from a sample of
31. That Is# it the unspecified continuous underlying
distribution Is 7(.), then

P(X(1)-1X'l) P(P(X( 1))1F(X'Q)) M P(P(X(1 ))c-'l)

lines minimal assumptions are made with respect to distribution,
this nonparametric estimator generally Is conservative. In
Figure 4, the Ras bias and confidence for a sample of 31 are
repeated, along with the corresponding exact results for the
first ordered sample value. Except for very small shape
parameter, the proposed estimator has much smaller mean square

% terror than the other nonparametric estimator.

Determining Tall Truncation Point

A problem to be addressed Is the choice of a tail truncation

point (m value). in the simulation just described the tail is
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approximately 1/3 of the data. This choice was made subjectively

before the analysis began. To examine the sensitivity of bias to

m value, the expression for' the exact expected order statistics

(equation 11) was used to calculate the expected bias in the RBE

for the sample sizes and Weibull populations of figure 1.

These results are presented in Figure 5 a, b, and € for sample

sizes l1, 20 and 31 respectively. These plots show considerable

fluctuation in bias for small shape parameters. The bias

decreases steadily with increasing modulus, in good agreement

with the Monte Carlo results. From Figure 5, it appears

that the optimal tail lengths are 3, 6, and 8 for sample sizes of

1@, 20# and 30 respectively, For small shape parameters, a longer

tail greatly reduces the expected bias. Figure 5d is a

magnification of Figure 5c: it illustrates the expectid bias foa

a sample ,of size 30 and a modulus of less than 10. If one takes

a tail of 12 points, the expected bias may be reduced to S5 or

less for 3< 6 <1.. A more complete treatment of the tail

truncation problem will be presented in a forthcoming AMMRC

report*

Allowable Istimate From the Bootstrap Method

The Bootstrap method used in determining a design allowable

values involves letting? be the empirical distribution of

observed values (strength test resalts),i.e, the probability

distribution with mass 1/n for each X value (X1, K2, X3 ... Xn).
The Bootstrap sample is obtained by selecting a random set of n

new values, independently with replacement from 9 (note, some
vWltus will be repeated once, twice, etc). From the ordered set

of the Bootstrap sample the 10 percent point (J ordered value 9

X() obtained consistnt with the 90 percent survival number is,

used for the allowable computation.

N Bootstrap sample* ar, obtained with corresponding X value
(10 percent points). The resulting sequence X(m)e X"x3 N:1)DO

S(J)P...X :J) *estimates the distribution of the 16 percent
point of F. The 5 percent point of the Bootstrap samples results

5.
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in the B allowable estimate of F. N usually is greater than 500.

If sample size is small, preventing adequate representation of

percentile values relative to the Bootstrap process, then a

smoothing method is suggested. Currently, the authors are

applying the 2 parameter Weibull tail model to the extreme

quaritile region of the empirical distribution. A schematic of

this procedure is shown in Figure 6. Applying

the regression model as shown in the figure will provide

generation of any'sample sine including extrapolation to lower

quentile values (g. .01 for A allowable). The smoothing

techniques has been very effective in smoothing tail region data

that contains contaminated data leg. outliers and bi-modality).

The flexibility of the Weibull model provides a good tail

representation.

Weibull Censored Data Allowable Estimate (Lawless),

The method developed by 11] for obtaining tolerance bounds for

Weibull extreme quantile values was applied to censored date.

The data was right censored in some instances by 85 percent in

order to preserve a homogenous lower extreme quantile region.

This scheme is extremely effective if two or more modes existing

in the data and only data from lowest mode is modeled

with remainder of data censored - (See Figure 7). The a

allowable of 1.30 agrees with non-parametric solution while

complote sample solution of 1.06 is too conservative. This

technique is equally effe.tive for unimodal datp.

Results and Discussion

in Figure Ba the complete ranked sample is displayed. The

allowable estimates for the functional representation are

tabulated at right of figure. The Weibull, normal and lognormal

agree quite well for the a allowable estimate of 44.1 KSI. The

tail r*gion is not adequately represented by the three f,2nctions,
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therefore reliance on the 44.A KSI value could result in an

unsatisfactory s allowable estimate, The third ordered 'number of
44.5 KS! represents 90 percdnt survivability value exclusive of

the tolerance bound. This indicates an obvious overly

non-conservative allowable estimate.

Figure Sb displays the Weibull censored data result for the "%

complete sample shown in Figure Sm. Within the figure is

tabulated the Design 3 38.8. This number represents the B

alilowable estimate agreeing with the conventional non-parametric

solution of 38.5 which is the first ordered value when sample

@sie is 30. The reliability of the non-parametric solution Is

usually good except when there is limited amount of dispersion in

the data. In this case# the results will be overly conservative. '

The 12 percent coefficient of variation for the sample in Figure
Sm is acceptable, therefore the non-paramettic method is

acceptable and consequently the censored data result. The direct

modeling of only the first four ordered values from the sample of

30 with 26 censored number has provided surprisingly accurate
allowable estimates. The censored data method has consistently

provided accurate results for most data sets for arbitrary tail

sizes greater than 4.
The ranked data of 18 values is displayed in Figure 9. Note,

the obvious bi-modality existing in the data, a result limiting
selection of an adequate model for obtaining the allowable value.

The results from conventional functional representation Weibull,

normal, and lognormal 4re 43.5, 42.3, and 42.0 respectively.

These values appear to be non-conservative in that the 9O percent

survival value is 43.0 not including reduction due to the

tolerance estimate related to the sample size. The obvious poor .,

representation of the tail region has resulted in this error.

In the tabulation to the right of Figure O, the results of
censored data solution, Bootstrap method and the exponential

model are shown to be 3062, 36.1, and 36.5 respectively. The

agreement among the three techniques is quite good. only the

first mode (first five ordered values) were modeled except for

the Bootstrap process. Finally# the non-parametric 171 result is
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included in order to show lowest possible allowable .value

considering all models. The result is somewhat conservative due
to the limited sample size.,

Conclusions

Three methods for estimating lower confidence bounds on extreme

quantiles have been discussed in this paper: an exponential tail 4-I

estimator developed by the authors, an application of the

Bootstrap to extreme quantiles, and a censored data method due to

Lawless. All of these methods are based on the idea of 7i
estimating confidence on an extreme quantile from a tail model,

as opposed to a model involving the complete sample.

Consequently, all three are potentially useful in situations

where the tail appears well behaved but the underlying

distribution is in doubt.

The method of Lawless and a Bootstrap procedure were introduced

briefly into the presentation only for comparison purposes.

Lawless's method has consistently provided good results in

obtaining the allowable values. At present, considering all

available models it is the "best". The primary drawback of this

censored.data method is its computational complexity.

Preliminary results from the Bootstrap method have b*en good but

inconclusive. More effort is needed in developing this method 44i4

for the allowable application.

The exponential tail estimator was presented in detail. This

new estimator for confidence on extreme quantiles has the

advantage of simplicity and intuitive appeal. A Monte Carlo

study for small samples from Weibull populations revealed

acceptable bias except in the case of small shape

parameters. Preliminary investigation of tail truncation points

suggests that modeling a longer tail reduces expected bias and

variance in the case of small Weibull modulus.

There is general agreement among the three extreme quantiles

models in dstermining all.owable estimates. This suggests that .',,

these models can provide effective alternatives to inadequate *44

conventional models where model uncertainty exists.
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FIGURE I ..
Monte Carlo Simulation of Reduced B,.as Estimator

For the Weibull Distribution

f (x) "(a/ 0)axa'e-x/)

* " 3,6,10

2500 simulations were performed for each (n,a) combination. •••
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Figure 2

Monte Carlo Estimation of Bias and Variance (RSE)
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Figure 3
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Figure 4

Comparison of Exponential Tail (RBE) and
Standard Non-parrMric Estimator (NP)

Percent BiasVs. Shape Paranmter
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FIGURE S .

RBE Percent Bias Vs. Shape Parameter
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FIGURE S (continued)
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BASIC Programs for Computing

Reliability and/or Mean Life

Donald W. Rankin
Lieutenant Colonel

US Air Force (retired)

1. Introduction. In essence, these BASIC programs

are used to compute those definite integrals which are
a•sc~~. . ;C-*nai prcbabj - y functions and which

yield confidence levels. A fu' -"atical development
of the formulae used will be .. ...r - earlier papers.

[I] and [2]

2. Binomial (Beta) distribution. (Sampling with

replacement.) If L denotes the level of confidence,
Z the unknown probability of observing a success, n

the sample size and k the observed number of failurcs,
the required formula is

z

I-L = ff(r)dr where f(r) = (n+l)C(n,k)rn k(lr) k
r=O

Obviously, z falls between 0 and 1.

Program 1. This program properly is used to test
for compliance with a minimum reliability standard.
Values for z, n, and k are given, from which L is

computed.

Program 2. This program determines the minimum

reliability associated with a stated confidence level.
Given are L, n, and k, from which z is computed.

Program 3. This program computes a "Best Estimate"
of the reliability consistent with a stated confidence
level. It minimizes the difference z2-z between the
limits of integration which span that confidence level.
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3._Hy eeometr ic prob abi1it•. (Sampling without
replacement.) If L denotes the level of confidence,

N the population size# n the sample size, k the
number of observed defectives and x the uiknown number
of defectives in the original population, then the re-
quired formula is

x=•i-- c(x~k 'C (-~-k)
L a P(x) where P(x) = --- 6T IT( T- -- *j

xuk 
T

It is found that m falls between k and N-n+k•.

Program 4. This program properly is used to test
for compliance with a specified maximum allowable number
of failures in the original population. Values for N,

n, k and m are given, from which L is computed.

Program 5. This program produces a listing of all
the discrete probabilities from k to m. The upper
bound can be established by specifying either m or L.

Program 6. This program determines the maximum
number of failures in the original population which is
consistent with a stated confidence level. Given are

L, N, n and k, from which m is computed.

Program 7. This program computes a "Best Estimate"
of the number of failures in the original population,
consistent with a stated confidence level. All of the
included probabilities exceed every excluded one.

Program 8. This program lists all the discrete
probabilities associated with the "Best Estimate" of
the number of failures in the original population.
(See Program 7.)

Program 9. This program is similar to Program 7,
but gives in addition the maximum likelihood estimate.
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4. Poisson distribution. (Constant failure rate.) .,:.

"Mean Life" is given by the reciprocal of the conqtant

(but unknown) failure rate. Let T denote the duration

of the test in any suitable units, and k the number of

failures observed during test T. If x/T denotes the
(unknown) failure rate per unit in the whole population,

then the probability that x does not exceed some value

z is given by

P(z) - f(x)dx where f(x) a -.. ! x
jm 0 0.

This integral, of course, is equivalent to a confidence

level; i.e., L - P(z). Once z has been determined,
the minimum value of Mean Life is given by T/z.

Program 10. This program properly is used to test '
for compliance with a specified minimum Mean Life in the

original population. Values for T and k are given

and T/z is specified, from which L is computed.

Program 11. This program determines the minimum

Mean Life which is consistent with a stated confidence

level. Given are L, T and k, from which z (and
hence T/z) is computed.

Program 12. This program computes a "Best Estimate"

of the failure rate in the original population which is

consistent with a stated confidence level. Having thus

determined zI and z2 , the corresponding values of
Mean Life are given by T/z 2  and T/zI

.'.5,
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5._ TheLogarithm of the factorial. The presence

of large factorials In the several formulae virtuallji

dictates computation by logarithms. The BASIC syntax 4

normally does not contain a routine for computing the

natural logarithm of the factorial of an integer. In

"view of this deficiency, a representative program has

been included which achieves the desired purpose. It

can be used directly, or employed as a model when com-

posing a required sub-routine. For single-digit inte-

qers, it computes the factorial directly, then passes

to the logarithm. For integers of two or more digits,

Stirling's complete formula is employed. (See [1], p.

278.) The result is accurate to 11 or 12 significant

digits, or to the accuracy with which the machine corn-
putes simpler logarithms, whichever is less. It must

be remembered that the count of significant digits in-

cludes both the characteristic and the mantissa of the

logarithm. But the subsecuent antilogarithm will con- '

tain no more significant digits than does the mantissa

of the logarithm.
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APPENDIX A

BASIC Program Listings

5 DISP "The LOGARITHM 'of the FACTORIAL." K'
10 DISP "ENTER Positive Integer (or Zero)"

15 INPUT N

"20 FACTORIAL-l @ LOGARITHM=O

25 IF NaO THEN 80

30 IF N-1 THEN 80

35 IF N>9 THEN 65 
• •

40 FOR IJ2 TO N

45 FACTORIAL-FACTORIAL* I

50 NEXT I *

"55 LOGARITHM-LOG (FACTORIAL)

60 GOTO 80

65 SERIES ((1/(7*"N2) -. 5)1/(30*N^2)+.5)/(6*N)

70 STIRLING-LOG (N)*(N+.5)-N+(SERIP.S-+.91R938533205)

75 LOGARITHM-STIRLING

80 PRINT N;" LOGARITHM of the FACTORIAL - ";LOGARITHM

85 PRINT CHR$ (10)

90 END
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2 PRINT to Program I."1,CHB$ (10)

4 PRINT " This program. tests for compliance with"

6 PRINT "a minimum reliability standard.",,CH1R$ (10)

8 DISP "ENTER Sample Size" @ INPUT SAM
10 DISP "Enter desired reliability standard" 0 INPUT Z

12 DISP "Enter number of failures observed" Co INPUT K
14 IF' K>1 THIEN 22

16 IF K-1 THEN 20

18 CONF-1-ZA(l+SAM.) @ GOTO 48

20 COLNFu1-ZftAM*(l+SAM-Z*SAM) @GOTO 48
22 Pul+SAM @ GOSUE 62

24 U=Q @ P-SAM-K @ GOSUS 62
I.:26 V=Q @ P=K @ GQSUC 62

28 ?ZuEXP (K*LQG (1-Z)+(SAM-K)*LOG (Z)+U-V-C,)

30 IE' Z>l-K/SAM THEN 40 1 To routine for tarafr Z

32 TZ-Z*FZA/(l+SAM-K) @ SZwTZ P? H-1

34 TZ-Z*rPz*(1+<-r1)/((l+sAMl-K+ti)*(1-z)) SZ-S7#+TZ

3C 11w1+11 @ IP TZ>. 00000000004 T'HEN 34

38 CONF1~--SZ 10 GOTO 48 1 E~nd ro.'tinq' 1cr smrall Z~
40 TZ=(1-Z)*U'Z/(1+K) 0SZ=TZ @~ Hul

44 P~=1+-1 P IF TZ>.W000000004 THEN~ 42

46 CCLea=SZd I Crid routine fcr lar-ic Z

4Pf vcot%=CC!'*1OO(0000fLf (3 NFCO=E'C0f4+tP (FCQNý)

5V1 CONVi'= tP (INKCO)/lOnlVr'n-ý00 I ERcunr~s to 8 rleccE,

T,2 PI ';:'iI "Fe r z. v'vrir'rc trizc o f";J' it~r:~ Cr

c ! k II' Ix r- iI tý ex cc cd In r 7, w I 1. c'ccu r v It I-

~2 L -j C IF'c v.>13 TLt-y 6?~1;r V' C~(0

*4 C=2 1 F0'I1 IDr, I~ F r ,-.I*t 9! NE~XT I

71)2 j {)~~( (P)-P+SF!PIl PE'TURN'.

72 E ry'0

74



3 PRINT " Program 2.",CHR$ (10)

6 PRINT " This program computes a minimum reliability" .N

9 PRINT "consistent with a specified level of confidence."1

12 PRINT @ DISP "ENTER Sample Size" @ INPUT SAM

15 DISP "Enter desired Level of Confidence" @ INPUT CONP

18 DISP "Enter number of failures observed" @ INPUT K

21 Zal-K/SAM @ IF K>1 THEN 39

24 IF K-i THEN 30

27 Zu(l-CONF)A(l/(l+SAM)) @ GOTO 66

30 FZ.Z^(SAM-1)*SAM*(I+SAM)* (l-Z.) ,

33 SZ-Z"SAM*(lSAM-Z*SAM) @ DLZ-(l-CONF-SZ)/PZ ' Z-Z+DLZ

36 IF ABS (DLZ)>.0000000004 THEN 30 ELSE 66 I.."

39 P'lISAM @ GOSUB 87

42 u=Q @ P=SAM-K @ GOSUB 87

45 VaQ @ P=K @ GOSU3 87

48 FZ-EXP (K*LOG (1-Z)+(SAM-K)*LOG (Z)+U-V-Q)

51 TZnZ*FZ/(l+SAM-K) @ SZwTZ @ H-1I-

54 TZuZ*TZ*(1+K-H)/((l+SAM-K+H)*(l-Z)) @ SZwSZ+TZ

57 H-1+H @ IF TZ>.00000000004 THEN 54 1 Integral loop

60 DLZ=(l-CONF-SZ)/FZ @ Z-Z+DLZ

63 IF ABS (DLZ)>.0000000004 THEN 48 1 Argument loop

66 XZnZ*100000000 @ YZ-XZ+FP (XZ) @ RZ=IP (YZ)/100000000

69 1 Rounds Z to 8 decimal places

72 PRINT "For a sample size of" S•M1"items, among"

75 PRINT "which exactly";K;"defectlves were observed,"

78 PRINT "a reliability exceeding";RZi;"wil]"

81 PRINT "occur with probability "jCONF;CHR$ (10) iCHR$ (10)

84 STOP

87 LNFC: IF P>9 THEN 96

90 FAC-1 @ FOR I11 TO P @ FAC-FAC*I @ NEXT I AI

93 -,LOG (FAC) @ RETURN

96 SERI-(l(/(lT*P^2)-.5)/(30*P^2)+.5)/(6*P)+.918938533205

99 Q-(P+.5)*LOG (P)-P+SERI @ RETURN

102 END

75

. . ...~. . , ,... ,.. .,... .. ... .. .. .. . : .. . .. ...... .. .. , .. *., , .. ... .,. . ,.-.,. .... .. .. , .- . ... .. .



1 p rIN I hi pr7ri Prcgrr it, 3 "CfTP,0 (10)
2 PFIU' "hsprg ccrniutcs n'";CDRP$ (34);

3PF I N7 U - stir.t Cf $(
4 PF I NT "1cf the rellch.J2ity irn the cenve cf 1rinrOIrM"
5 P F . N'I 116Aterie between tcurnds fcr a spex ~ceIic.

7 DISP " h:,N 71 L Seiple, Size"1 @ ItNPU. SAM
C DISP "Eniter Cc~irecj ccrjL~dence .lcve.l 0 L4; CB
9 DISP "Enter r~uirrtr cf failures cobscrvedc" @ NU
10 IF X~>1 2J3E1N 25

12 P 1, 1N T C H F.(3 4) ;"'Bect Eeatin ate"' ;Cmp$ (4,)
13FIINT 11 le not ~e~ir~ee Jcr rc

14 PuINT "fc~lures. Use Precgrarr 2 fcr rclJ&Hl~ty." STOP
C15 A-=I-2/8AL

16 FAaAL4 ISAL.,-I) *SAN j( +SPI,,) I 1-.A.) I L'eg Ir~ A Iccp.
17 SAAFM 1+A-* . (ý 7rI-FA/1I 6SA*.(14 S AM.))
16 F A (S AV'-J.) *LAV* (3. +SAV.) I I.-Z.) I D~eg Ir zI ler.

20 k.=Z~4LLZ @ IF ALS (DLL)>.0O000C0C0O4 7 D.1E N I P
21II =Z SAN* ( I+SAM-Z* SAM) Co Ym Ab.- I/ ( I- Z.)

2"3 A-A4LLA @ IF' Aie~ (D1A)>SAY.#*.0O000000010 T5E~N 16 ELSE 42
24 1 Erc& cf rcutltre fcr a aft~1e failurc
25 P-i4SAM @ GOSUDi 52 1 Logir routine, fcr K > I
2 6 U-Q @P-SAX-1 Cý OSUJI 52
27 VMQ @ PWFý C OSUB 52

29 F A - rXI ( <* LOC (I1-A) +(S AE- N LOC (A) +U-V-Q) I A J.c cr.
30 ZaR4RZ @ 'IA~A*FA/(1+SAV-FY) SAN-TA C 3-1

I1 TA-A*TA I 1+!-J.) /C(14 SAII-R4 J.) I J-A.) )@ SP, u"SA +TA
32 3=4i @ IF qA>K* 00000000~002 TrEVE 31 1 A integ'ral loop.

* 33 E'Z-EXP (K*O 2~)(A'~*LOC (Z.)+U-V-C,)
24 tZg/Z1)/(Al/(Z))? uZmZ+DL.Z
35 IF ?IES 41LZ)>X*.000V0000002 'i'H~tv ?? I PZ-FA Icc~p

38 H=i-s: G IF rxZ,>,*.CC0C00C00O02 THEN 27 1 2, Intcogrel Icl
* ~39 =A-/-)

40 DL=CL~ZS)Y(A(/.( /lA)4)@ A-A+DIA
4111 ýIr S (DL.A) >SMA'*.0C 0000C00003. Tfi'l`N d-9 i E~rc c.i A Jeepr
42 XiA..A*10fC000O0 Q Y?,-XA+Ff (XA.) @ Zt=ID (YA)-/lO(00COC0

44 1 ibounrzc rcEu3 ts to 8 Occimel FlacesL
45 PPINT "Fcr z Eanr*Je EJ'e of";SAM;i1itcirrs, errcng"'
46 F 1 1IýT "which e),act~y"' ;K;"Y~efect ivea were etservee,
47 F. F INT "the `"r[fl[$ 20t);' Let r tlratC"1 ~ (24);
4FPY i~I fT c f thc rr2JrkAIit~y'
4ý F It T "f )a I betctween ";ZA;' zrnd ";22

*5~ 6 1 11 7 "with prctakhI1.ity "'CCIjFiCi1Fer (]ICN;CHflf ( Ir-)
51 SqO

*52 LN.FC: IF P>9 THEIN 55 1 Lcq&r~thrr CC the facctcrit]
52 FtC- I C FGTý 1-1 UO P @) EACx1EI.C*I C NEVT I
54 C=LQC (FI'C) C. FrTAUI

5r 6= CL )iLOC (P )P+,cErf: I P rTu'r i\
£7 UNU;
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2 PIFINT " Procrarn 4.",,C[WS (10)
4 P~RINT " This program tests for .corrpliance with e"
6 PFINT "specified ma~xhiurr. number cf allowable failures" "

P PIRNT "in the crJ4inel pcpuletion.",pC1IR$ (10)
10 DISP "ENIER Population Size" @ INPUT POP
12 D 1%P,:" CN TER Saimple Size" @ -INPUT, SAML
14 DISP "ENTER Vvixin'um Number of Allowable Fal~ures" @ INPUT MXF
16 DISP "IN.TER Number of failures cbserved" @ INPUT, 1
38 IF M'XF>u K THEN 22
20 DISP " ERROR MvxJnIuv already exceecled" @GOTO 14
22 P-l+POP 0 GOSUB 60
24 P-0 @ P-3.+SAM @ GOSUB 60
26 S=Q @ Pm1+MXE 0, GOSUB 60
28 TaQ @ PoPOP-SAM @ GOSUB 60
310 U-0 @ PUPOP-MXF @ GOSUB 60
32 V-Q @ P-POP-M~XF-SAM+V' @ GOSUL 60
34 W=Q @ P-SAN-K @ GOSUB 60
26 X*Q @ Pab'IXF-K @ GOSUB 60
.`8 Y-0 @ P-1+'E @ GOSUB 60
4C T'Xn.EXP (U+1v-P-W-+S+T-X-Y-L1) @ SX*TY
42 NUwTX*4114tXF-P)g*1l+SAM-P) @ PmJ44'
44 TX-NU/(P~ ePOP-SANI-l-IV1XF+P4,). @ S~sSX+.IX
46 IF.,IX>K*.OO0flOQOOOO2 TflEN 42
48 VX-SX*10COOOOOO @ YXuVX+FP (VX) @ ZY=IF IY)')/300000000
!. 0 PFINq "1 1`hC r.'Crp'Jaticn consists cV";rPOP;"Eirnilaer items# A"

5 2 PrPNIT "~ce~ple ofi cJlze1;SAM:"i1s eravin which conritdis cxactl>"';T
-54 PTýINII "eefectives. The criginal pcpUla-ticr. ccrtalicej Lower"'

5p P nsp sx @ PFIN~I CEIF$ (10) ;CflF<$ 110) @S2'CF
60 LNEC: FAC-1 @ IF P)1 TmirtN 64
62 C=O P ETUivt
64 IF~ P> 'fFN 70

F, FO F 1=1 TO P @ FAC-FAC*I @ NEXT I
G F C'LOO C.iFAC) G PEI-URN

/2 C.=1P+.5)*LOG (P)-P+SE'rP1 Rr3 F
74 E;ND
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2 PRINT " Program 5.",CHR$ (30)
4 PRINT " .Thie program has an expanded prinltout which"
6 PRINT "tabulates both specific and curulatIve probabilities"
8 PRINT "for various numbers of failures. The upper bound of"
10 PRIN' "the listing can be established either by stating the"
12 PRINT "naximum number of allowable feilures, or by specify-" [NAr
14 PRINI "Ing a desired cumulative probabJlIty.'";CHR$ (10)
16 DISP "ENTER Population Size" @ INPUT POP
18 DISP "ENTER Sample Size" @ INPUT SAM
20 DISP "ENTER Number of failures observed" @ INPUT K@ A-0
22 DISP "ENTER Desired upper bound. Use Integer to denote mexJrium"
24 DISP "nuifber of allowable failures. Or use decJmal fractJon td"
26 DISP "express apprcprJate ,confidence level."
28 INPUT MXF@ IF MXF<1 THEN 38
30 IF FP sMXF)=0 THEN 34
32 DISP "ERPRO ";MXF;" Invalid parameter";1 GOTO 22
34 IF MXF>n K THEN 38
36 DISP "** ERROR ** Maxiur already exceeded" Ra GOTO 20
38 Y-25 @ DIP) B(99) ,C(99.) V.'"

40 Pal+POP @ GOSUB 82
42 RaO @ Pw3+SAM @ GOSUB 82
44 S&Q @ PaPOP-9 @ GOSUB 82
46 T-Q @ P&SAM-i @ GOSUB 82
48 B A)aEXP (T-R+S,-Q,) @ C(A),mBIA)
50 PFIN7 " 'ho popUlation consists cf"JPOPJ"'oinviler items, A"l
52 PRINT "semple of sIze`";SAM;"is drawn which contains exactly"1E',
54 PRINT "defectives. The various probabi••ites ere:";CHR$ (10)
56 PFINT "Number of Prcbabillty Cumulative'"
58 PRINT "failures of occurrence prcbahJl1ty";CHR$ (10.)
60 PFINT USING 62 ; X+A;Z.(A);CIA)
(2 1VAGL XXDDD,0,X,Z.8D ,I.CXZ CD
64 A=l+P @ IF' F•- (A/5,),O THEN PFIN.1
66 r: ,A) IP- - I•K+K)* j1+POP'-sAM-A)'/ (* ,l+P0P-J(-A)
GC, C(A)=1(3)+C(A-]) @ IF A<> Y 71[E1 -74
70 DISpE "INSEU'.1 -EV' PCU. he•r press CCK'" @( PAUSL
72 ¥=Y+35 E COTO 56
74 IF •XF< 'r'BIE: I,2
76 IF 1.,XF<A+K 'rI.WN £fC ELS L, f 0
,8 IF, tý F>C()\-l) 'II7Eiq 60,
VG Pr1N2 CHR 13IC) ;C[IP,$ (10) C. SV1CP
V2 LNFC: EAC-. (o IF P>l T'HEN 8E
C4 Q=0 @ PEIUR1.
E6 IF P>9 TIiE6 92 a.

F.8 'C E I=1 TOC F @ FACaFAC*1 @ NEXT I
'0 O=LOC. [iAC) 0 PrIURl.

c2 SEr I l(1/ 7 **P 2)-. 5)/ (, P*-2) +. )/ (6*P,)+ .01993F!53320 5

S4 C=1"+.5)*LOG ([-')-P+SL:UI R LE'IUFN
96 END
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2 PrINT "Prcgram 6."',CHR$ (10)
4 PRINtI " Ihie prccirair. computes the n'8ximum number of"k
6 PRIINT "defecti'-,ez in the original Fopulaticrn ccresltent'"
F PPINT "with a Specified confiden~ce level and with the"'
10 PFIN'I "o~bserved3 numrber of sam~ple failures.";CHR$ (10)
12 D1SP "EMI'EER Population Size" @a INPUT POP
14 DISP '"ENTER Sairple Size"l @ INPUT SAM
16 LDISP "E~NTER Number cf failures observed" @a INPUT K~
18 £)ISP "ENTER D~esired Confidence Level. (Use decirtal fraction)"
20 INPUT CONF@a Zal-X/SAM 6 C-O @a D-0 @ IF K>1 TIHEN 32
22 IF Kul THEN 26
24 2: i1 -CONF.) ̂(1,d(1+SAM)) @a GOTO 52
26 F aZ^(SAM-1)*SAM* (1+SAM)* (1-Z.)
2F SZ-Z"SAM*(1+SA1!-Z*SAM) @a DLZu(1-CONP--SZ,)/FZ @ 2-rZ+DLZ
30 IF ASS (DL2.)>.00000001 THEN 26 ELSE. 52
32 Pul+POP @a GOSUD 94
314 1RaQ @a P-+SAM @a GOSUB 94
36 SzQ @~ PuPOP-SAM4 @ GOSUB 94
38 Ua 0=0 P=SAM-( (d GOSUB 94
40 X=Q @ P.JX @ GOSUB 94
42 FZ=SXP (IX*LOG ,l-Z)+(SAV1-X)*LOG )+--Q
44 TZm21*FZ'/(1+SAM-K) @a SZ*TZ @a Hal
46 I'=*Z(4-)(ISNKR*1&, @a SZnml+TZ
48 Hun1+11 @a IF'7IZ>.0000000l THEN 46
50 DLZa(l-C0NF-SZ)/FZ @a ZzZ+DLZ @a IF ABS IDL24)>.O0000001 THiEN 42

54P=P0P-1MXF-SAP+K @a GOSUL-94

FeVu PaltX @ OU 94

62 VQ @ý,l+K @ O-SUL 9
6 4 7X=rXP (+--4+X.-r)@ SX=TX

6( £1Uu'ix~ t114XF-W ) g+SAM-ý) CCPw+
F2 'IX.NL/ (P* IPOP-SAN-]-tý;XF4 F,)) @ '-'X=SX+'IX

i0 XL., ni>r,* .OoccO;cC0002 TIIE(, 615
72 IF' SX>= CON~E' u1E'rT 776
74 J=F., Aý F~b*XFE' 1vNXrF14PjXF 0 Cscc&ý @ IF [-CF, THFEý 78 ELSE 54
76 L=SY- GL =MXF 0 lIXF-MXF-1 Oc C-8lF @ IF~ C0> 99 'HEij 54
72 XJi *J1CC00000 @ Y~wXJ+FP (XJ2) @a ~JJIP (YJ)/l1fl000000 K
F 0 XL=Lj*10CGO00COC 09 Y1,-XL+EP (XL,) Q, LL-=]P (YL),/3CPrc'0r01f

~2PlanI Thc, FQ.WLIaticr ccrsists crf";CicP;",eninhIr itorE. A"l
r4 PIF1NI "Eveirr'e cL csiz0";SAV;"is cerewn whihlk ccrtrliv& exact]Y,";,
6 r P VýI Nl " 60f C Ct IV C. E tic criglrn1 pcprulatien ccntalr~ec fewer"
F2 PFINI "ta"lGe'c1-c with prohabJ-iity";LL
0O PF I NT "Or fc%,.cr thern";G;"1with prcb&HIJity"iJJ

~2 P F. NI N 1CIP$ (10) ;CHJP$ (10) @a STLOP
94 L NFC; I-AC1 @~ ILP P>1 '1HE~N S 6
56 C-0 P EWU4 'ft.

9E IF' P>S 111EN 1.04
300 IVcP 1=1 TO P CZ EIAC-FAC*I 0a NLX'1 I
]1V2 rC=LOCC iL'?C) (- Pr-:TurN '

104 S L1.1= i (T/ (-7 * 2) -. 5)/(0* P 2 ).E-) /(6* P) +. 5 1E S3 6 F.32 0 5 I.

]6 C~ + +. LOC (H)- rA ! F I -0FF ) FTIh

79 ~A
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1 Pb-I NT " Prcgramr 7.",CHR$ (10)
2 ýIN'I " This prcgram yields a '";CIMS, (34.);"Bcst Estivrate";
3 PEINT CHRS (34);"1 cfl
4 PRINT "the tote,1 nunber of defectives In the crJvirar"
5 PRINT "pcpulatIcn, In th~e sense of Trninuiru distarce"
6 PFINT "betweer bcurnds fcroasecfe confiderce level.",

8 DISP "ENTIER Sairp1e Size" @ INPU'I SAM
9 D1SF "Enter number ef failures observedT" @ INPUT K
10 DISP "Enter desllre6 corfidence level (use eeclnal freicticri)"
11 INPUT CCNE'Q IF K>1. T14EN 25
32 IF X-1 THEN 16
13 PJUN'I CHRA (34);"fleet EstiIT'ate"';CHP$ (34);
14 PPIN'I " is rnot defdrcd ifcr zerc5"
35 PFi1q1 "feilures. Use Program, 6 for prctabJ31ty." @ GO'IC 93
16 A-1-2/SAMI
1.7 FA-iV^ (SAM-1) *SAM~* ( I+SAM)* (1-A) @ SAaWASAM* (1+SAM-A*SAM)

19 ~Zz-A/(SAMb1)*jSAM*(+A)*1)

21 Z-Z+U)LZ @ IF AV-S (DLZ) >.00000~f0002 THEN 19
22 SV,-ZASAM* (1+SAM-Z*SAM) @ Y-SAM-1/(1-Z)
23 DLAu(CONF-.SZ+SA)*Y/(JFA*(Z/AI%*SAM-3/(3-A))-Y),)
24 A-A+DLA @ IF ABS (DLA)>.000000001 THEN, 17 ELSE 43
25 Pw1+POP IF GOSUD CP
26 R=C. 0, Pal+SAM (2. GCJSUB 08
27 ScQ @ FuPOP-SANM Q COSUZ 8F
2~ 8 UQ P2 P-SAM-!K @ COSLIB 88
0ý X-Q @1 P=R GOSUB V'P

?C FwQ @ PX=I-K/SAM @2 RZuSQ1F (R4,P*1-/SM ) @ A=PX-PZ
3.1 VA=E'XP iK*LDC (1-A)+(SAM-K)*LCG jA)+b,-X-Q.) @ 2.mrx+rZ
32 'r2A=A*FA/(14SAM-K) @2 SAwTA 2 ~Jul

33 A~AT~*~1r~-J)/ (+SA~-~3)* 4-n) @ SA=SA+TA
4 J=1+0 @ IF hI-A>K*.0000000002 THEN 22

35 D'Z=EXP IK*LOC (i1-.)+(SAN1-K)*LcIG ) +S-N-C) .
36 DLZ-iFPA/F7;-1)*Z/(SAM-K/(1-Z)) @2 Za 2+DLZ

7IF AI3S fDLZ) >K*.00000C0002 'I1{ENq 35
32 tTZ=Z*FZ/(l4+SAM-1() @2 SZ-TZ @ Hal1

*39 r'2j=.Z*fIZ* (1+K.4) /( (]4SAMN+11) * 11-Z) ) @ SZG-SZ+TZ
40 bH1+H @~ IF rlZ>K*.0000000002 THEN~ 39

42 A=A+DLA @ IF AF2S (DLA)>SAM*.00C000C0000 TIHEN 31

44 MXF=IN'1 (K.+1A*141P0V)
*45 PR~illI The pc-pulatlon ccnsists cf";iC)P;

sJ0 PF IN'l "simiJ J.r J tens."
47 FiIN'I "A serrp1c ci Eizd";SA.;"'is erawn which ccntdlnE CXaCtly"
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47 PPINI "A samrrpe of Size" ;SAM;-"iS d~rawn whi~ch -contains exactly"
48 P=POP-V4XF-SAMr+K @8 GOSUE 88
49 IW.Q @ P.-POP,-NIXF @8 GOSUEZ 88
50 V=Q @8 P=MXF @d GOStJD 88
51 T-O @8 P=MXP-K @8 GOSUB 88
52 YaQ @ PaPOP.-MNF-SAM+!4 @ GOSUEI 88
52 N=Q (8 P=PCP-tANF @ GOSUB 88
54 M=O @ PaM14F @8 GOSUB 08
55 L-0 @ PwN- (8 GOSUB 88
56 G-0 @(8 1+
.57 I-Xm-EXP (U+V-P-V44S+T-X-Y-F,)
.58 IIX=PX* tl+NXF.)/P (8 SXmTxI '
59 14Uu.'rX* (1MFP)*(+A-P* PPSMMF
60 Pwl+P @8 TXaNU/P @ (8 XT
61 IF IIX>]<*.00CC0O000002 TBEN 59
62 CK-SX @8 Cf'UMXF @8 PuI+K
63 PY=ENP (U+b1-F-N+S+L-X-G-F)
64 TYm1-Y* 11+tNF)/P @d SY-TY
65 MU=TY* (14MNF-P.)* (1+SAM,-P.)/(POP-SA1-.MNF+P) ::
66 P-.1+P @8 TY-MLI/P @8 SYsSY+TY
67 IF,11Y>!(*.00000O000002 THEN 65
6 P CY=SY @8 CE=MNF @8 Pwl+K
69 DISP LYNFIMXF
70 IF CX+PY-CY<C0NFTHEN 78
7]. IF PX<PY THiEN 75
72 IF CXC-CY<CONF THEN 83
73 MNFaMNF+1 @8 PYxw*DvlB* j POP-SAM-PNF4 1+I)/ (MNF-K)* (3+POP-MNF)-)
74 CYaCY+PY @ 00710 69
75 IF CX+PY-PX-CY<CONF' TREN 83
76 MXE'=vXF-i @ cX)(-cxPX
77 PX=)( l-/(jYF)*(P-X)/OPMFS+K @ GOTO 69
78 IF PX<PY THEN 81.
79 IMX~aN1XF+1 @8 PX=PX*PM'X?* PGP-pSAM-VAXF+[<+1)/.( (iPXP-K)* 01+POP-MXF).)
80 CX-CX4PX @ COTO 69
81 @~'NF1( CYOCY-PY
P2 PYPY(1-F/(]+YjNF) )* IPOP-MNF)*/(PO)P-MNF-SAtv+K) @8 GOTO 69
83 Xx=(CX+PY-CY)*10000~0000 @ YY-XX+FP (XX) @8 Z!17P (YY)'/100000000
P4 PPINT X;",defeCtiVeV. lat t~he&';ZZ;"l1eve] of Conf$-"
85 PrIN'1 "cncel the criglnal pcpu~ation containe6 eo en
P6 P F 1NT MNF;11 re" ;tXF;%cefect~vos, inclus~ive."
8,1 PFINI CRR$ (10) @8 STOP
PS LNFC: IF P~>9 TPEN 91
89 FAC1t @ FOR 1-3 TO P (8 FACuFAC*I Q8 NEXT I
90 Q-1-OC WAIC) (8 PSETUPN
S I SEPI- I1/(7*Pft2)-.5)/(.20*P^2)+.5)/(6*P.)+.918938533205
92 Q-(P+.5)*LOG (P)-P+SErPI Ot RETURN
93 PPINT CHR$ (30) :CHR$ (10) @8 END

81
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2 PRINT "Program 8.",CHR$ (.10) c
4 PRI~I 2hls prcgraw has an expanded pit~twih

6 PFINT "tabulates both specif~c and cumulative probabilities"
e PPINT "fcr vario~us numbers cf failures. The upper and lower"'
10 PPIN7'I"bcunds cf the listing reflect the nmaxiri~m and nrinI'rrum"
12 PPIN1I "nurber ci fellures associated with the "'iCHR$ (34)1;
14 PRIN-1 "Best Estir'ate";-CHR$ (34)
16 PRIN'I "consistent with a stated level of corL~d'.,nce."ijC~iP$ (10.)
1C DISP "1ENTrR Populaticn Size" @ INPUT POP
20 DISP "EN'IEP Sample Size" @a INPUT SAM
22 DISP "1EN.7FR N~umber cf failures observed" @ INPUT K@ A-0
24 DISP "ENTER~ Ccnlicence level. (Use eecinal traction-,)"
26 INP'UT CONF@ DIN) P(99) IC(99)
20 IF' POP-SAM>59 THEN 98
30 Pn14POP @ GOSUP 84
3 2 R-Q @a Pnl+SAM @~ GOSUB 84
34 SwO @ P=POF-K 0 GOSUB 84
26 71= @ P=SAM-K 0 GOSOB 84
38 PiA)ltXP (T-R4S-0.) @a C(A).-P(A)
40 FOF A-1 TO POP-SAM,
42 PI~PA1) u)IIPE--SM,(~ l+POP-R-A))
44 C IA).=? 1A) +C(A-1) @a NEXI A
46 PPIN'1 The population consists cf";POPI"sidrilar Iteirs." K
48 PPIN'1 "A sarrple of size'";SAM:"I1s 6rawn which contains exactly"
50 PPINI K;"Idefectlve~s. The various pr-cbahllitles. vre:'11;CIIR$ 110)
52 PRINI "Number of Prcbability Cumulatl"el
54 PFINI "failures of occurrence rrcobabilltV";CHR$ (10)
56 SwO @ DnPOP-SAM
58 IF P(a).<P(D) THEN 64
60 IF C(D-1)-C(R)4P(13)(<CONF THEN 6e
62 DwD-1. @ GO-7I0 5 8
64 IF C(D)-C(B,) <CONF THEN 68
66 B-813+ @ GO'IO 58
66 A-0 @a FCFH= T
70 PýIN'l US INC 72 1K4H; P(H) C IH)
72 IM~AGE XXDDD j]I0X pZ . D 41OX, Z.80
74 Am1+A @a IF FP IA/5)0O THEN PRINT
76 NEXT Hi @ PRINT
78 PRINT USING e0 I"1Suw1",C(D)-C(B-l),"(Ccnf. level)"
80 IMAGE XXAAAO10X,Z.BD,7X,13A
82 P R INT CHR$ (10) ;CHR$ (10) @a SI'OP
84 LNFC:. FAC-1 (a IF P>1 THEN 88
86 0-0 @a RETURN
88 IF P>9 THEN 94
90 FOP I-i TO P @a FACuFAC*I @a NEXT I
92 C*LOG iFAC) @a RETURN
94 SERlun(,1/(7*P^2)-.5)/(30*P^2)+.5)/(6*P)+.9l893P533205
96 Q=EP+.5)*LOG (P)-P+SERI @a RETUR14
98 DISP "~EPPOR **Population too large fcr ~rrrý."
100 DISP "Redirrension on linee 26 and 2P."'
102 END
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1 PPIN'i ProgramD 9*"#CHR$ (10)
2 PrNIN'T " This prog.ram yields a "'$ICHR$ (30)1
3 PRINT "Best Estivetet",CER$ (34.); t oft' n
4 PRINT "the total nun'ber of defectives in the original~"
5 PRINT "populatior, in the ~sernse of minirrum distance"
& PRINT "between bounds for a specified confidence l.evel."'
7 PRINT "Also given Is the maxiiruni likelihood estimpate."1
B PRINT @ DISP "ENTER Population Size" @ INPUT POP
9 DISP "ENTER Samrple Size" @ INPUT SAN
10 DISP "Enter number of fa13 ures observed" @ INPUT K

11 DISP " Enter desiqred confidence level (use *eeoiial fraction)"
12 INP~UT CONP@ IF K>l THEN 26
13 IF Kul THEN 17
14 PRIN'I CHR$ (34) ; "Best Estimate"I CHR$ (34) 1
15 PR1N'I " is not deflned :fcr morrd"
16 PFIM. "failures. Use Program 6 for probability."1 @ GOTO 98
17 Awl-2/SAM
18 FA-AA(SAM-1)*SAM*(l+SAM)*UV-A) @ SAmA fSAM*(l+SAM-A*SAM.)
19 2-l-FA/(SAM*(1+SAM~).)
20 FZ-ZA(SAMl1)*SAM*(l+SAM)* j1-Z)
21 DL=F/ZI**IZ/SM1ZSM

* 22 ZuZ+DLZ @ IF ABS (DLZ)>.C0000000l1 THEN 20
23 SZaZASAM*(1+SAM-Z*SAM) @ YwSAM-1/(l-Z)

* 24 DLAICONF-S2+SA)*Y/(FA*(Z'/A*ISAM-l/(i-A),)-Y))
25 A=A+D1LA @ IF ABS (DLA)>.OOO00000l1 THEN 18 ELSE 44
26 Pin]+POP @ GOSUS 93
27 RaQ @ Pal+SANv @ GOSUB 93
28 S*Q @ PuPOR-SAM @ GOSUB 93
29 UMC. @ PoSAM-K @ GOSUD 92 if

30 XWQ@ FO OSB9
?I F.O @ RX=1-IK/SAM @ RZ=SQP (FXA%2-RX*1j-K/(SAM-l)).) @ AnRX-Ft

32 FA=EXP #K*LOG j1-A)+(SAM-K)*LOG #A)+S,-X-Q.) @ ZmPX+.IZ
11 'lA=A*FA'/(l4SAM-K) @ SAxT'A @ Jal
34 TA=A*7A* ll+K-J.)/( (1+SAM-KJ.)* il-A)) @ SAuSA+TA
25 J=1+3 @ IF 74010K.0O000000002 THEN 34
36 FZ=EXP iK*LOG (11Z)+(SAM-K)*LOG OZ)+S-X-Q)
37 DLZa9FA/FZ-l)*Z~/(SAM-K/(1-V).) @p ZmZ+DLZ
36 IF ADS IDLZ)>K*.0000000002 THEN 36
39 ,TZ=Z*F2/(14SAM-K) @ SZV.TZ @ Halu
40 TZa2*TZ*(1+K-H)/((1+SAM-K+H)*UlZ2)) @ SZ-SZ+1 2Z
41 Hal1+H @ IF.TZ>K*.0000000002 THEN 40
42 VWX-SAM-K/(i-Z.) @ DLA-(CONF-SZ+SA)*WX/(FA* (Z/A* (SAM-K/(l-A).)-W)())
4.3 A-A+DLA @ IF ABS (DLA)>SAM*.00C00000001 THEN 32

45 MXF=IN'l (K+.5+(l-A)*VL+POF-SAM))
46 PJFINT " The pc'pulatlor consiets of"1POPi"Fin'i~ar itetra."

47 PRINT1 "P~ BeorrJc of cIze"1'SAtl;11'11 drawn which ccrtains exactly" ~ v

48 PuPOP-MiXF-SAM+I< @ GOSUE 93
49 W-Q @ P.F'OP-MXF @ GOSUS 93
SO V-Q @ P=MXF @ GOSUB 93
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50 '1=0 @ P=MXF @ GOSUB 93
51 T=Q @ P=MXF-I( @ GOSUB 93
52 Y-Q @ FuPOP-MiNF-SAM+K @ GOSL)B 93
5.3 N=Q @ PuFOP-MNF @ GOSUB 93
54 M-Q @ RuMNP @ GOSUB 93
55 LuQ @ P.Z4NF-K @ GOSUB 93
56 G-0O @ Pul+K @ PXNEXP (U+V-IP-W+S+T'-X-Y-F)
57 T'XaPX*11+MXE')/P @ SXuTX
58 NUmTX* (1+tXF-P,)* (1+SAM-P.)'/(POP-SAM-MXF4P)
59 Pml+P @ TXuNLJ/P @ SXnSX+,TX
60 IF,7'X>K*.0O000000002.THEN 58
61 CX-SX @ CF=MXF @ Pnl+K @ PY=EXP (U+M-R-N4S+L-X-G-E)
62 TYmPY* gl+MNF.)/P @ SYwTY
63 MUUTY* (l+MNF-P)*(1+SAM4-p.)/(POP-SAM-MNF+p,)
64 Pnl+P @~ TYinML/P @ SYOSY+.TY
65 IF IIY>K*.00000000002 THEN 63
66 CYnSY @ CE=MNF @ Pml+K
67 DISP 1V1NFpMXF
68 IF CX+PY-CY<CONF THEN 76
69 IF PX<PY TkfEN 73 .f

70 IF CX'-CY<CONFTHEN 81
71 MNFaN~NF+1 @ PYaPY*MNF* 4POP.-SAM-MNF+K+1)'/(IMtNF-K)* fl+POP-t'NF,))
72 CYxCY+PY @ GOTO 67
73 IF CX+PY-PX-CY<CONF THEN 81
74 MXFEMX?-1 @ CX(uCX-PX
75 PXRX 6K'(+X))fOPMF'(OPMFSMK @ GOTO 67
76 IF PX<PY THEN 79
77 MXF-MfXF+l @ PXaPX*I4XF* (POiL'-SAM-HMXF+l(1)'/( MXF-K)* (1+POP-MXI'))
78 CX*CX+PX @ GOTO 67
79 MNF-MNF-1 @ CYuCY-PY
80 PY-PY* 1l.K/(1+tvNF).)* ePOP NNF.Y/(POP-MNF-SAM+K) @ GOTO 67
81 XX=(CX+?Y-C'i)*l00000C00 @ YYEXX+FP (XX) @ ZZ=IP (YY)/100000000
82 PPIN7 Kj'IdefectIves. At the";-ZZgIllevel of .conjfl-"1
8.3 PPIN' "clerce, the criginal pcopulatiorI ccntained between"o
84 PRIM' MNF;"1and11;MXF';"defectivcs, Inclusive."ICHR$ (10)
85 MLX=I1+POP.)*X/SAM
86 rMLY=INT (MLX) @ IF PLX-I'LY THEN 89
87 PRIN1I "The iwaximwr likellhced estimiate is" ;LY;"defe~ctives."
88 GOTO 98 

4

89 P1BIN'I "There ere two equally likely rraxiirum I~ke]Jhccd"
90 PtiIN7 "estinltats. They ar6";MLX-l;"1anrd";MLX;".defectives."
91 GOTO 98
92 STOP tt
93 LNFC: IF P>9 TH1EN 96
94 FAC-l @ P~OP I-I TO P @ PACuFAC*I @ NEXT I
95 Q=LOG IFAC) @ RETURN
96 SERI-il(/(7*PA2)-.5)/(.2O*PA2)+.5)/(6*P)+.9189 38S 332 0S
97 QniP+.5)*LOG (P.)-P+SERI @ RETUPN
98 PPIN'1 CHR$ 110) ;CHR$ 110) @ END f.
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3 PRINT " Program 10.",CHR$ (10)

6 PRINT " This program tests for compIIence with a"
9 PRINT "minimum mean life standard.",CHRI (10)

12 DISP "ENTER Duration of Test, UNITS E mployed."
15 DISP " (Use comma between.)"
18 INPUT DURUNIT$

21 DISP "Enter desired mean life standard in "7tUNIT$
24 INPUT MLS@ DISP "Enter number of failures observed"
27 INPUT K@ Z-DUR/MLS @ IP R>0 THEN 33
30 CONF=l-EXP (-Z) @ GOTO 72
33 IF K>9 THEN 54
36 FAC=I @ FOR 1=2 TO K @ FAC.FAC*1 @ MEXT I
39 FZ.Z4K/(FAC*EXP (Z)) @ TZ=K*FZ/Z
42 SZ-FZ+TZ @ IF K-I THEN 51

45 FOR J-u TO K @ TZ-TZ*(K-J)/Z
48 SZ-SZ+TZ @ NEXT J ..

51 CONF-1-SZ @ GOTO 72 4.:

54 SERI-( (1/(7*K"2) - .5)/(30*K"2) +.5)/(6*K)

57 FZ'EXP (K*(l+LOG (Z))-(K+.5)*LOG (K)-Z-(SERI+.9189385332))
60 TZ-Z*PZ/(X+1) @ CONF-TZ @ L-2 ,..

63 TZaZ*TZ/(K+L) @ CONF-CONF+TZ
66 IF TZ<.00000000001 THEN 72
69 Lnl+L @ GOTO 63

72 XXnCONF*100000000 @ YYXX+FP (XX) @ ZZ'IP (YY)/100000000
75 PRINT "For a test duration of "1DUR;" "itUNIT,$
78 PRINT "during which exactly "iK;" failures were observed,"
81 PRINT "a mean life exceeding ";MLSI" ";UNIT$

84 PRINT "will occur with probability "IZZICHR$ (10)

87 END

is

4 , I

-. 4*o
4*44 i

4.mt .
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6 PRINI " ThiE prcgrair ccinputes a nminJirur rfean life"
9 PPINT "consistent with a specified level Cf confidernce."',CHR$ (10)

12 DISP "ENTER Duration cf Test, UNITS Em'ployed. (Use comm~a between.)"
15 INPtYI DURUNIT$
18 DISP "Enter desired Level of Confidence. (Wee decim~al. fraction.)"1
21 INPUT' CONF@ DISP *"Enter numrber cf fellures *chserveel"
24 INPUT K@ IF !00 THEN 30
27 Zu-LOG 01-CONI') @ GOTO 75
.30 ZuK+SQR (M @ IF K>ý THEN 54
33 FACal @a FOR 1-2 TO K @a FACuFAC*I @a NEXT I
36 FZuZ^K/(FAC*EXP (Z).) @ TZ.K*FZ/Z
39 SZ=FZ+TZ @a IF Kul THEN 48
42 FOR Jul TO K @a TZaTZ*(K-J.)/Z
45 SZuSZ+'IZ @a NEXT J
48 DLZ -Z* (1-SOP (1- 2*(Z- K) * (CON F.1+SZ)i/ (Z*F Z).).)/ (Z-K)
51 ZaZ+DLZ @ IF ABS (DLZ) <K"2* .0000000001 THEN 75 ELSE 36
54 SEýRI-((1/(7*KA2)-.5)/(30*KA2)+.5)/(6*K)
57 FZ=EXP oK*(1+LOG (Z),).-(K+.5)*LOG 1K)-Z-1SERI+.9189385332))
60 T Z-Z*FZ/(K+l) @ TCON.TZ @a L=2

63 TZ-Z*TZT/(K+L) @ TCONoTCON+TZ @a IF TZ.<.00000000001 THEN 69
66 LuL+1 @a GO2O 63
69 DLZwZ* (1-SOR (l-2*(Z-K)* (CONF--TCON)t/(Z*FI),))/(Z-K)
72 Z*Z+DLZ @a IF ABS (DLZ).<K^2*.0000000001 THEN 75 ELSE 57
75 XXmlOOOOO*DUR/Z @a YYmXX+FP (XX) @a M.LSI.P (YY)/100000

78 PRINT "For a test duration of '"iDUP" ";UNIT$
81 PRINT "during whi~ch exactly `;*ill: failures were observed,"
84 PRINTI "a wiean life exceeding '"IMLSI'" "IUNIT$

87 PRINT "owill occur with-probability ";ICONFICHR$ (10)

90 PRINT CHR$ (10)

93 ENE)h
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2 PRINT " Program 32."',CHR$ (0
4 PFIN'I " ibis prcaranr computeb the ";CHPS (34);
6 PRINT "Best Est~pat d";CHP$ (34.);" of"l

8 PRINT "the Mean Life consistent with a spe~cified Level'"
10 PPINT "Of Confiderce.*",CHR$ (10)
12 DISP "'ENTER Duration of.Test, UINITS exployed. (Use .comnna between.)"I

14 INPUT DURpUNIT$
16 DISP "ENTER desired Level of C~..vfidence. (Use decir~al fraction.:)"

18 INPUT CONP@ DlSP "'0ENTER numrber c;f failures cbmerved."
* 20 INPUT K@ IF 100 THEN 28

22 PRINT ClIPS (34) ;"BestEstlmate"jCHP$ (34.);
24 PFINT " is nct defined for zero failures."
26 PRINT "Ure Prcaram 11 to ccmp-ute Frcbabllity." @ GOTO 110

30 FZ.E/EXP (Z) @U A=FZ
32 FAuA/EXP (A) @U DLA=(F2-F'A)*IA/(FA*411A).)
34 AUA+DLA @U ALI~uA @U IF ASS (DLA)>X*.0000000005 THEN 32
36 TCON.FZ/A-FZ/Z

* 38 DLZO fZ-(Z-1).)* I 1-S CP (1-2* 1 Z-.) * i1-A) *(CON FTCON)/((-A) OrFZ).)ý)
40 ZaZ+DL~Z @U F221/EXP WZ
42 IF ASS IDLZ)>K42*.0000000001 THEN 30 ELSE 88
44 ZuK+SQR (K) @U IF 1>9 THEN 66
46 AuY-SQR 1K) @U FAC-l @U FOR 1u2 'TO K @U FACuFAC*I @U NEXT I

48 FZnZ4K/(FAC*EXP (Z),) @U I'mK*D'Z/Z @U SZuPZ+TZ
50 FOP JmI TO K @U TZaTZ*(K-J)/Z @U SZ=SZ+TZ @U NEXT J
52 FAmA4K/(FAC*EXP (A).) @U DLAwA*(FZ/FkJ])/(K-A)

54 A-A+DLA @U ALBuA @U IF ADS (DLA)WK.0000000005 THEN 52

58 FOP H.1 TO K @U TAnTA*(K-H)/A @U SA-SA+TA @U NEXT H
60 TCON*SA-SZ
62 DLZuZ*(1-S0R (1-2*(Z-K)*(K-A)*ICCNFrTCON)/(K*(2-A)*FZ),))/(Z-K)
64 Z-Z+DLZ @U IP ASS (DL2)>KA2*.O0000000n0l THEN 4e ELSE 88

66 SFRlm((1/(7*K"2)-.5)/(30*KA2)+.5)'/(
6*K) @U A.TK-SQR (K)

68 LNFCntK+.5)*LOG (K)-K+(SER1+.9189385332O5)
70 FZuEXP (X*LOG (Z)-Z-LNFC) @U TZoK*FZ/Z @U SZuFZ+TZ @U OuK-i
72 TZuTZ*C/Z @U 8ZuSZ+'1Z @d Qu-i- @ IF TZ>.00000000004 THEN 72
74 FAuEXP s1N*LOG (A)-A-LNFC) @ DLAuA*sFZ1/FAk1)/(K-A) @U AuA+DLA
76 IF ABS (DLA)>K*.0000000005 THEN 74
78 SA=O @U IA&PA (U Q-t(+l ~
60 TAuA*TA/0 (U SAuSA+TA (U Q-C'+1 (U IF ,'A>.00000000004 THEN 80
F2 TCONu1-SZ-SAH
84 DLZuZ*i1-SQR (1-2*(Z-K)*(XKA)*4CCONF-C0N)'/(K*(Z-A)*FZ)))/(Z-K)
86 ZsZ+DLZ @U IF ADS (DL2.)>KFA2*.000000000l THEN 70
88 Q~ul00000*DUR @U XX'OO/Z @U YYuXX+FP IXX) (U ZZ.IP (YY)'/100000
90 CC&QQ/A @U BB.CC+FP (CC) @U AA=IP ,BBk)/iOOOOO @U HH&QQ/1(
92 JJuhH+FP (HI-4) @U KI(IP 0J.)/100000
94 PPINI "Fc~r a teEt duration of"iDUF';UNIT$
96 PPINI "lexactly"F;K;"failures were observed."
98 PRINT CHR$ (10) 1 "At. the "' CONF; " Level of Ccrifiderce, the"

100 P FI NT1 CHR$ (34) 1"Best Estim'ate"'I
102 PRINT CHR$ (24);" cf the M~ean Life falls"
104 PRINT "betweeril'sZZ I'l and"l

106 PRINT AP,;UNI1TS;"., The muirax~uT' like-"
108 PRIN'I "3 ihcced estimate ice "';KK; UNIT$;"."
110 PRINT @U END
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APPENDIX B

The Programs Exercised

Program 1.

This program tests for compliance with
a minimum reliability standard.

For a sample size of 7 items, among
which exactly 2 defectives were observed,
a reliability exceeding .7 will occur with
probability .44822619

Program 1.

This program tests for coynollance with
a minimum reliability standmrd.

For a sample size of 21 items, among
which exactly 6 defectives were observed,
a reliability exceeding .7 will occur with
probability .50582374

Program 1.

This program tests for compliance with
a minimum reliability standard..

ior a sample size of 70 items, among
which exactly 20 defectives were observed,
a reliability exceeding .7 will occur with
probability .5754343

Program 1.

This program tests for compliance with
a minimum reliability standard.. 0
For a sample size of 700 items, among
which exactly 200 defectives were observed,
a reliability exceeding .7 will occur with
probability .78981566
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Program 2.

This program computes a minimum reliability
consistent with a specified level of confidence.

For a sample size of 7 Items, among
which exactly 2 defectives were observed,
a reliability exceeding .53790159 will
occur with probability .8

Program 2.

This program computes a minimum relLabilLty
consistent with a specified level of confidence. 00A

For a sample size of 14 items, among
which exactly 4 defectives were observed,
a reliability exceeding .59237177 will
occur with probability .8

Program 2.

This program computes a minimum reliability
consistent with a specified level of confLdence.

For a sample size of 70 Items, among
which exactly 20 defectives were observed,
a reliability exceeding .66385031 will
occur with probability .8

Program 2.

This program computes a minimum reliability
consistent with a specified level of confidence.

For a sample size of 700 Items, among
which exactly 200 defectives were observed,
a reliability exceeding .69937687 will
occur with probability .8
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Program 3.

This program computes a "Best Estimate"
of the reliability in the sense of minimum
distance between bounds for a specified
level of confidence.

For a sample size of 7 items, among
which exactly 2 defectives were observed,
the "Best Estimate" of the reliability
falls between .49573206 and .87983592
with probability .8

Program 3.

This program computes a "Beat Estimate"
of the reliability in the sense of minimum
distance between bounds for a specified
level of confidence.

For a sample size of 14 items, among
which exactly 4 defectives were observed,
the "Best Estimate" of the reliability
falls between .55515217 and .8438256
with probability .8

Program 3.

This program computes a "Best Estimate"
of the reliability in the sense of minimum
distance between bounds for a specified
level of corffidence.

For a sample size of 70 items, among
which exactly 20 defectives were observed,
the "Best Estimate" of the reliability
falls between .6428334 and .77920786
with probability .8

90T%
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Program 4.

This prrcpran tesEt for ccrrrilance with a
specfie~e. ia1ran~fur~ runbter cf al~lowable f li~ureE
in the crigir-e1 pcpul~1Licn.

The pcpulatlcn ccnvist:& of 26 siLrJiar Iteirs,
sanw-3e of eJ,-c 7 Jr.. e'rwr. whiich czr~talrs exbctly 2
defe.ctlver. The or1gdne1 popul1a~tion ecncrftvircc Iwer.

thr eefe~ctJveE u~ith prc;LabI1:ty .5!C25C2.

PrC gren 4.

ThJr~ trc~rer tcctE for c~chrllcr:cc v.ith e.
Cj-C CJLI 0 C' fi. riL, n r vn .L'c r cf a I Ic,*L~ L, fiJ 3u r v'

I r tý. e c r sJ r t .2 Fc p.La1r.t Icr, .

7he j'crL.3&t icn ccrEJctE Cf 2( t~in 11cr iterv, P?
rziný-c cf E 12c. 77 11 erer 1 vTicb crnta'IrE. £eyectly 2

C~ctiv~. Iec~rvir2 cj:irtcnccrtrelrcC fewe.,r

P roe, re, r

'ThJr rrc~rar tertr- tcr ccr~rilircc výith t

J r tthe cr1 rIn Ine rc rv,3 et icr

Thv rcpulatiJer ccreIt Jtr c! 4F E J Jliar ltr, A
~a r,1 c cf ,Jzc 'j Ir erevn wI1icF centrir~r extc t I % 2
ecfectiver. The crigirol rcpuie1ticr~ ccrtrircce fever
ther 16 ceefecr-tive' witil prc~baHl~ty .5422361

Prcqrtm 4.

'ThI L ~r cSr a r tc Ftsa f c;r ccap] Iarnce % J th c
rrec f Ice r-ex .n~ur run-ter ef aJlcweb3c ftil'vrer
I n the c r Ig ral pcriul atJon .

The Fpculat icr ccnu Jets cF 4F elinilar Lteprr, I. .

~eany.)e of size 7 Jr cerown which containe exactly 2
eefectivers. The crIqinaJ population contalnec4 fewer
then~ 22 defectivcu with prcbability .80013.43
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Programr 5.

This program has an oxpandel ,Fr~ntout which
tabulates both specific and cumulative prcbeh..1itcs
fcr verlous nurbers cf.fallurev. The upper bcurd ,of
the listing .can be eetablished either by statJni, the
maxinmun, nunber of allowable failures, cr by .pe, cfy-
Ing a eserefc cuviulative prcbabflity.

The pc'.ulatlcr ccrasts cf 26 ElIPlar Items, t,

saft.rJ c-f size 7 1* drawnr which contains exactly 2
eefectivos. Tke various probabJilitJe ere:

Nunrber of Probeb11 It y Cumulative
failures c.1 cccurronce rrcbatbjl'ty

2 0.01914530 0.019145.0
2C. 04c,47009~ C.OC4615?8
4 ~~0.07317057 01~~~

5 0. 0! 659C7 O. •744502 i

6 0.130 47 5 222 0.3^21PS24

7 C . ! C, rC S 0.44218912
E C,.lC.O0,23. 0.55025033

O.1003':256 C.65059289
1 0 0. OC:3755 0. 73013043
13 C.07439614 1. ý 92 (557

12 C.051"11691 , ., 7 204 34 6
0,045217.5 C. 282C0O7

1I4 0.0324C377 0. TC072 464 6i.1,
15 C,.021P5061 0. S7257525
16 0.01362116 C.9e619f41

17 0.00771C66 C .C93] S.,07
18 0.003P5932 C. F.777440
10. C. 003 6] 751 C . 97F9 39.19 1
20 0.00051350 0, •r£,•0541

0.00009459 '1.0 000000
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Prcvran 5"

This prcgran, hcs ern e x.rnee prJr~tcut whicch-
tabulatee both specifJc arC ,cumulative prcb.bL'lt|ct,
for vericus nun ters of fel2ures. The v'per bcurdl af
the listir.g cer be ertab]lihee either by stetJrS the

faximun, numtber of P']1cwable fallure., cr by rcpcify-

I r C e ce sJr e. c? unuL)I pt Ihe pr cha k, 11L ty.

The pou3aut frc ccr.r Jsts of 4C sIn Iar Itens, A

seor.e of elhe 7 is .rewr vwlch ccrtelns exact1j. 2

.Cefectives. Tt'e vsricus prcL-l,. IIJItIer r re:

Xup.+.er v;f Prcb&FllJ] ty C Lni'. Iat Ivctj¢ ::

fa Ilu res cl cccurrerco prota'eI3Jty

0.00t12740 0. 01116691

4 0.01444C70 0 .02261F..
c~0 0.021442.

O. 0 22•0 4. 1 0752543r'

7 0.3489CC 011015045.

0.040FP5392 0.15300l43F0.04596067 .19 .?6504
11 0.C5S3234 0. 24705P3?,,

1 . 0 a31 M 60.7 w, 30 02'1114 •'•

1. 0.05517224 0.3553W33"

13 0.05614751 0. 4115 ?089
1 0.05614751 0.46767840
]5 0.055258?0 0.52293670
26 0.05358380 0.57652C50

17 0.05123951 0.62776002
18 0.04S34696 0.(7610698
19 0.04502903 0.72113601
20 0.04140600 0.76254201 '".
21 0.03759229 0.80013430

22 0.03369383 0.83382814
23 0.02980606 0.86363422
24 0.02601258 0.88964680 *'-

25 0.02238402 0.91203082
26 0.01897775 0.93100857

9. 3.
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1, 04

Program 6.

This program computes the maximum number of
defectives In the original population consistent
with a rpecLfied confidence level and with the
observed number cf sample failures.

The population consists of 26 similar items. 'A
sample of size 7 Is drawn which contains exactly 2
defectives. The original population contained fewer
than 12 defectives with probability .81352657
Or fewer than 11 with probability .73913043 I

Program 6.

This program computes the maximum number of
defectives in the original population consistent
with a specified confidence level and with the

4 observed number of sample faLlures.

The population consists of 48 similar items. A
sample of size 7 is drawn which contains exactly 2
defectives. The original population contained fewer
than 22 detectives with probability .8001343
Or fewer than 21 with probability .76254201

Program 6.

This program computes the maximum number of A
defectives In the original population consistent
with a specified confidence level and with the
observed number of sample failures.

The population consists of 125 similar Items. A
sample of size 14 is drawn which contains exactly 4
defectives. The original population contained fewer
than 51 defectives with probability .8094822
Or fewer than 50 with probability .79092954

I'.[
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Program 7.

.This pr.ograv' yields a "'Sest Estinate" cf
the total nurber of desectives In the original 4
.populationo Jr, the rense of minimum distance
between bounds for a specifled confidence level.

The populetJon censists of 26 similar iter.,.
A sample of size 7 Js 6rawn which ccnteJns exactly

2 defectives. At the .80842809 level of ccrfi-
eence, the crL9Jnal population contained between

4 and 12 defectlves, inclusive. ,•.i ,,

P'rogramT 7.

This prcgranm yJelds & '"Leet EatJ ate" cf
the total nuniber of defectives in the original
*Fcpulation, Jr the sense of rlnJmun distance
betweer Lounes fcr•a, siecif$1 ccnfidence level.

The pcpulat.lcn .consists of 4e sirmilar Iterre.
A sean.plc cf size 7 le erawro which contains exactly

2 eofcctlvep. At the n1667394 level of ccrfl-.
eence, the crlJral pcVuletLon contained betwcen
6 arid 23 diefectivee', Inclusive.

Progran' 7.

t hJse rcgran yiclds a "t1ept Estimrate" .cf
the total ruiTker cf delectives in the crigina,
rcFCu1t.Jcfn Ji, the aence of nirJmun, di.tance
between beunds for a s*ecItlee confidence level.

The pcpulation ccnuists of 125 similar ites.

A sanrple of sh~e 14 Is drawn whi~ch contains exactly
4 defectives. At the .80976263 level of corfi-

.er-ce, the origr•rl porulation contained between
20 anr• 54 defectives, inclusive.

ft.
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Prograir 8.

This program has an expanded printout which
tabulates both Ppecific and cumulative probabilltie"
for var.Jous numbers of failures. The upper and lower
bounds of the listing reflect the raxfr•ur and minimum
number of failures associated with the "Vest EstImate'"
,ccnsi.mtent with a stated level of confidence.

The population consists of 26 similar item.s.
A samrle of size 7 ,is ,rawn which contains exactly

2 ,defectives. The various probabilities ares

Number of Probability Cumulative
failures of occurrence probability

4 0.07117057 0.13578595
5 0.09165907 0.22744502
6 0.10475322 0.33219824
7 0.10999088 0.44218912
8 0.10806121 0.55025033

9 0.10034256 0.65059289 K
10 0.08653755 0.73913043
11 0.07439614 0.81352657
12 0.05951691 0.87304348

Sum 0.80842809 IConf. level)
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Program 8.

This Fr.ogram has an expcneed printout which
tabulates bcth specific and cumulative prcbabillties
for various num•ers of. fallures, The upper and lewer
boun.ds of the listing reflect the max.Jum and minJmum
number of fall,ures associated with the "Best Estimate"
,consistent with a stated level of confidence.

The population consists of 48 similar Itenms.
A sample of size 7 ,s drawn which contains exactly

2 .defectives. The various probabilities ares

Number of Probability Cumulative
.failures of occurrerce probability

6 0.02829410 0.07525439
7 0.03489606 0.11015045
8 0.04085392 0.15100438
9 0.04596067 0.19696504

10 0.05008534 0.24705038

11 0.05316076 0.30021114
12 0.05517224 0.35538338
13 0.05614751 0.41153089
14 0.05614751 0.46767840
15 0.05525830 0.52293670

16 0.05358380 0.57652050
17 0.05123951 0.62776002
18 0.04834696 0.67610698
19 0.04502903 0. 72113601
20 0.04140600 0.76254201

21 0.03759229 0.80013430
22 0.03369383 0.83382814
23 0.02980608 0.86363422 2.

Sun 0.81667394 (Conf. level)

q%.
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Prograw 9.

This prcgroa, yields a "Peet Estinete" .cf
the total nunber of de.fectJves Jn the crJI9ral
rcpulatJcn, Jr the sense of nminJ'um distance
between bounds for P specifled confidence level.
Also given Js the maximum likelihood est iate.

The population consists of 26 sJplasr items.
A sa*.rle of size I is erawn which contains exactly

2 de~ectiveff. At the .80842809 level of confi-
•ence, the original population contained between

4 and 12 defectJves, inclusive.
The raximum ]ike]lhood estimate is 7 detectives.

i' Progran, 9.
7-his program Estimate" of

Spc)gcl•yields
the total number of de.fectives in the original

- populaticn,$in th ense of minimum distance On
between bounds fcr a cpecified confidence level.
Also given is the voxJmum likelihood ectirmte.

The pcpulation consists of 46 slm,3lar iters.
A sample .cf size 7 t.. drawn which contains exactly

2 .defectives. At the .81667394 level of confi-
dence, the original population contained between

6 and 23 defectives, inclusive.

There are two equally likely maximum likelihood
estimates. They are 13 and 14 defectives.

"Program 9.

This program yields a '"Best Estimate" of

the total number of detectives in the original
population, In the sense of minimum distance p
between bounds for a specified confidence level.
Also given Is the maximum likelihood estimate.

The population ccnsJsts of 125 similar iteirs.
A sample of size 14 is drawn which contains exactly

4 defectives. At the .80976263 level of confi-
dence, the original population contained between

20 and 54 *defectJves, Inclusive.
There are tw~o equally likely maximum likelihood
estimates. They are 35 and 36 detectives.
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Pr.ogram 10.

This program tests for compliance with a
miinnouw Pean life standard.

For a test duration of 3200 hours
during which exactly 6 failures were observed#
a mean life exceeding 500 hours
will occur with probabi3ity .45767113

Program 10.

This prograir tests for .conplJance with a
minirum mean life standard.

For a teat .Suratton of 3200 hours
during which exactly 5 failures were observed,
a mean life exceeding 500 hours
will occur with probability .61625634

Program 10.

This program teats for compliance with a
winJmur mean life standard.

For a test ,6uratJon of 3200 hours
during which exactly 4 failures were observed,
a mean life eucee.d~ng 500 hours
will occur with probability .76492997

Program 10.

This program tests for compliance with a
milnimum rean life standard.

For a test duretion of 3200 hours
during which exactly 3 failures were observed,
a mean life exceeding 500 hours
will occur with probability .88108124
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Prograr 11.

This program .computes a minimum rean life
.consistent with a specified level of confidence.

For a test duration of 3200 hours
during which exactly 6 failures were observedo
a mean life e'xcee.dJng 352.60211 hours
wil2 occur with probability .8

Program 11.

This program ccmputes a minimum rean LJfe
consistent with a specifJed level of confidence.

For a test duration of 3200 hours
during which exactly 5 failures were observed,
a rean life exceeding 404.75623 hours
will occur with probabJlJty .8

Program 11.

This pregram computes a minimum roean life
consistent with a specified level of confidence.

For a test duration of 3200 hours
during which exactly 4 failures were observed,
a mean life exceeding 476.12113 hours
will .occur with probabJlity .8

Program 11.

This program computes a mJnJ ium mean life
.consistent with a specified level of confidence. V. -

For a test ,duration of 3200 hours
during which exactly 3 failures were observed,
a mean life exceeding 580.23091 hours
will occur with probability .8

J.00
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Prograw 12.

This prcgram 5com~putes the "Beat Est inater" of
the Me~an Life consistent with a spe~cified Level
of Confidence. x

For a test duration of 3200 hours
exactly 6 failurar were~observed.

At the .8 Level of Confidence, the
"Best Estimate" of the Mean Life falls
between 327.58165 and
954.25284 hours. The ma*imuv like-

.3Jhoce estivate Js S33.33333 hour..

Program 12.

,This program ccmputes the PBest Eat hater" of.
the Mean.Life consistent. with a aFecifled Level
,of Confidence.

For a test duration of 3200 hours
e-xactly 5 fai'3ures were observed.

At the .8 Level of Confidence, the
"Beat Estimate" of the Mean Life falls
between 376.27302 and
1220.02901 hours. The maximum like-

lihoad estimate Is 640 hours.

Program 12.

This program computes the "Best Estimate!" Lof
the Mean Lifezconsistent with a *Fpecifed Level
of Confidence.

For a test .duration of 3200 hours
e-xactly 4 failures. were observed. K

At the .8- Level of Confidence, the
"Blest Estimate" of the Mean Life falls
between 443.51195 and
1666.43711 hours. The maiximum like-

lihood estimate In 800 hours.
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APPENDIX C

Boma Notes on BABUC Programming

Like much that is utilitarian, the NABSC program-
ming language* is in a state of constant evolUtion.
Moreover, most vendors .mbellish it with additional 0. ,
statements and commando, intended to solve real or
imagined difficulties. Name of these differences are 4,1
pointed out here. But the ultimate guide is a good r.,
owner's manual.

1. Capital Letters, Older versions of NAG, re-
quire the use of capital lettr%,. Some later ones can
recognize instructions written in lower cases

2. Varlable Assignment. Older versions require

that the statement LET precede the variable name.
With later versions1 its use is optional. Variables
should be a&signed one at A time. Zn a statement such
as "A n I a 4"*, many versions would regard the second
equals sign as a logical operators

3, Vorisble Nammfe Most versions allow names of
some length so that they can act as prompts to the oper- 4.,

star. ,However, as few as two characters may be used by
the machine. Thus "DIVER" could not be distinguished
from "DIUCO". Curtain reserved words -- such as FN,
0O0 IF N ON, OR, TO, and others -- should be avoi.oad as
variable names,

4. Subroutine Calls. Bome versions allow galling
a subroutine by label. Others call by line number only.

5. Multiple statements on a line, if allowed, are
.separated by some symbol which varies among versions. l
Perhaps 0 & And u are the most common.

BeDginners' All-purpose-Uymbolic Instruction Code

102

S ,... .. *. . , ,. , .. . p'. * >*., , ,.



6. Remarks are variously preceded by ' I or
Ram.

7. There are many varieties of truncation at the
radix. One will encounter INT, FIX, IP, FPP FRC and
others.

Be Perhaps the most confusing in the command
"PRINT". In some versions it is used to address the
printer, in others to address the displays To address
the printerl we may find PRINT PRINT# LPRZNT or
PROI, To address the display, we might encounter ?
DINP PRINT or PR#O, Additionally, PRINT* some-
times is used to address a mass storage device.

9, Par formatted print-out, some versions refer-
once a numbered IMAtK line. Others reference astring
variables Thus Program 5q lines 60 and 62 might reads
60 Y$ - " 04# 0#.#####, #a #####"
62 LPRINT UIINI Y*1 K+'A, b(Al) C(A)

10. Note that punctuation is not necessarily the
same from version to version.

A;
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THE APPLICATION OF EXPERIMENTAL DESIGN TO
EVALUATION OF MULTI-ECHELON STOCKABE MODELS

Carl B. Bates
US Army Concepts Analysis Agency

Bethesda, Maryland

ABSTRACT. A long-range objective of the Army is to develop a
comprehensive stockage methodology which integrates the echelons and
optimizes cost, weapon system availability, and transportability. As
research into multi-echelon inventory models progresses, various stockage
policies (models) have been proposed as ways to best satisfy requirements
and constraints. The Concepts Analysis Agency conducted a study to
evaluate the utility and effectiveness of two proposed multi-echelon
stockage policies. A part of the study involved a sensitivity analysis on
each of the simulation models and a comparative analysis on the two models.
This paper discusses the experimental design employed and the statistical
analysis results of the sensitivity analyses and the comparative analysis.

1.BAMOKROUND. Current Army supply policies do not relate oprations

and maintenance, Army (OMA) funds to weapon system availability. The
long-range objective of the Office of the Deputy Chief of Staff for
Logistics (ODCSLOG) is to develop a comprehensive stockage policy which

integrates all echelons of support activities. The Retail Inventory
Management Stockage Policy (RIMSTOP) Model is the current DOD Inventorystockage policy Methodology development of multi-echelon inventory theory

is ongoing. The Inventory Research Office (IRO) recently developed the
Major Assemblies Stockage System (MASS) Model. MASS is a multi-echelon
inventory stockage model which uses an optimization process. It is a
derivative of the Multi-Echelon Technique for Recoverable Item Control
(METRIC) Model developed by The Rand Cor ation. Before further
development or Implementation of MASS, ODCSLOG wanted an independent
assessment of MASS. Ultimately, the US Army Concepts Analysis Agency (CAA)
was requested to evaluate MASS and compare it with RIMSTOP. The Multi-
Echelon Stockage Analysis (MESA) is documented in a CAA Study Report*
published in 1984. A part of the study objectives was to conduct
sens:tl.,ity analyses of MASS versus RIMSTOP. This paper discusses the
sensitivity analyses performed on the two models,

"*Blake, Robert T., et al., Multi-Echalon Stockaae Analysis (MESA),
CAA-SR-84-18, Bethesda, MD, May 1984.
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2. EXPERIMENTAL DESIGN AND MODEL. Because both models were
relatively fast running, 256 to 300 runs were allowed for the sensitivity
analyses. Ultimately, eight input factors common to both models were
selected for the investigation. Three levels (low, nominal, and high) were
"selected for each of the eight input factors shown in Table 1.

Table 1. Input Factors

Direct Support (DS) Units

A -Repair cycle time (days)
a Demand (failed major assemblies removed)
C - Percent of failed assemblies repaired

locally
D - Order ship time (days) K

General Support (GS) Unit

E - Repair cycle time (days)
F : Demand (failed major assemblies removed)
G - Percent of failed assemblies repaired '

locally
H - Order ship time (days)

This gave 38 5 6,561 factor level combinations. A 1/27 x 38 fractional
factorial design was developed which contained 243 desi n points. The A
design permitted testing of the 8 main effects and the 28 first order
"interaction effects. The fixed effects analysis of variance (ANOVA) model
for the fractional factorial design was:

y * + A + B + C + ... + H + AB + AC + AD + .. GH + HOI.

The dependent variable (y) represents the model output variable Inventory
;' Cost; p is a true but unknown common effect; the letters A, B, ... , H

represent the eight model input factors; HOI represents the Higher Order
Interactions. The ANOVA table is Illustrated In Table 2. The design may
appear somewhat wasteful because only 128 of the total 242 degrees of,' ~freedom were fitted. The design was emplo~yed, however, because of the;,desire to measure all first order interactions.
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Table 2. ANOVA Table for 1/27 x 38 FractionalFactorial Design

DIUrees of Sum of Menr
Source freedom squares squares F-ratio

A2SS A MSA MS A /MS Hol
B 2 SS(B MS B MS B)/MS (HO
C 2 SS(C MSC MSC)/ (HO!) ASRol

B 42 SS(A MS(HA) MS H)/MS(HO)"

H/gher order
interacttons 114 SS (HO) MMS(HOI)
ToaD 242 SS(ATM)A' MA)/SHI

4 '.••

3. AAYI.The single output variable of interest was the cost, of'
inventory, req-uT~ to achieve an anticipated level of operationalavailability. Anahyses were performed for two and items (the 6A3 tank.,
and theM561 truck). The data were obtained from 1,982 maintenance records ".",
from the Vth and the V11th Carp in USAREUR. The ANOVA illustrated In Table,'"

above was performed on the M 61 and the M60A3 data from both models. ,,.
Main effects and two-factor Interaction effects were tabulated, and.,.•
significant two-fact~or interaction effects were graphically illustrated. .
The significant two-factor interactions for the M661 system and the MS0A3
system are shown in Tables 3 and 4, respectively. Table 3 shows 11'.interactions significant from MASS and 9 interactions significant for
RIMSTOP. All mata effects except A and F are contained in the interactions

shown. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ A Th manefc a ilnfcn o ASbti a o

significant for RIMSTOP. Main effect F was not significant for either
models; therefore, based upon the M661 date, input factor F (GS Demand)
does not have a significant influence upon inventory cost from eithermodel.

1.07so
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Table 3. Significant Interaction Effects for 14561

{ SignificanceI
Interactions

BC - DS assembly removals x DS percentage repaired 0.001 0.001
BO - DS assembly removals x DS order ship time 0.001 0,001
BE - DS assembly removals x OS repair cycle time 0.05
BG - DS assembly removals x OS percentage repaired 0.001 0.001
BH - DS assembly removals x as order ship time 0.001 0.001
G - DS percentage repaired x DS order ship time 0.001 0.05
CG DS percentage repaired x 6S percentage repaired 0.01 005
CH DS percentage repaired x OS order ship time 0.001 0.001DE 0S order ship time x OS repair cycle time 0.05 0.05
EQ - GS repair cycle time x a$ percentage repaired 0.001
GH - GS percentage repaired x GS order ship time 0.001 0.001

Table 4. Significant Interaction Effects for .OA3

[ Significance
Interactions T

Mss RI OP

"BC - DS assembly removals x DS percentage repaired 0.001 0.001
80 - DS assembly removals x DS order ship time 0.001 0.001
BE - DS assembly removals x OS repair cycle time 0.01 0.01
BG - DS assembly removals x OS percentage repaired 0.001 0.001
BH - DS assembly removals x GS order ship time 0.001 0.001
CO -DS percentage repaired x DS order ship time 0.001
CE - DS percentage repaired x GS repair cycle time 0.05
CO 0S percentage repaired x GS percentage repaired 0.001 0.001
CH DS percentage repaired x OS order ship time 0.001 0.001
DE DS order ship time x OS repair cycle time 0.01 0.05
EG - GS repair cycle time x GS percentage repaired 0.001 0.001
GH - GS percentage repaired x GS order ship time 0.001 0.001

"Ie
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Table 4 for the M60A3 data shows there were 12 significant
interactions for MASS and 10 for RIMSTOP. Most of the Interactions in
Table 4 are the same as those In Table 3; however, the two lists are not
Identical. Again, all input factors are contained in the Interactions in
Table 4 except A and F. This time the F main effect is not significant for
MASS, but it is for RIMSTOP. As with the M561 data, the three largest
Interactions in Table 4 are GH, BH, and BC.1

Figures I and 2 Illustrate the GH (GS percentage repaired x GS order IWO"
ship time) interaction for the M561 data for MASS and RIMSTOP,
respectively. The ftgures show the similarity of the Interactions from the
two models. Figures 3 and 4 show the same Interaction (GH) for the M60A3
and the two models. Again, similarity of the Interactions is shown.
Figures 1 and 3 show the comparison of the M561 with the M60A3 data for the
MASS Model. Figures 2 and 4 show the comparison of the two data sets for
the RIMSTOP Model.

4. SUWARY. The utilization of experimental design permitted an
efficient evaluation of the MASS Model and a comparison of MASS with the
RIMSTOP Model. Experimental design should be an integral part of the test
and evaluation of computer simulation models. Analysts involved in the
exercise of simulation models for the purpose of generating data for
analysis should be apprised of the need for experimental design and
continually reminded of its importance.

4116 '
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LEAST-TIME ANALYSIS: A METHODOLOGY FOR

EXPERIMENTAL DESIGN IN LOGISTICS SYSTEMS TESTING

AND EVALUATION

IPRE VIOUS PAUI

Clarenoe H, Annett10

TRADOC Independent Evaluation Direotorate
US Army Combined Arms Center

Fort Leavenworth, Kansas 66027-5130

Abstreuot This "work in progress" paper describes the background and

dvelopment of a distinctly new methodology for the design of tests and

objective evaluations of logistics systems. The method is based on the

physical principle known aa Format'a Principle of Learnt Time, and on the
practical reality that "supplies dolivered too late are worthless." The

problem of logistical support is formulated mathematically using variational

calculus. Rather than rigorously solving an abstraots generel problem, an

information theory approach is used to chart the flow of logistical materials ,..

and requests in time and spice, segment the flow into discrete serial units,

and analyze eaoh unit separately. In this way, both the specific flow unit

where a delay in delivery occurs and the reason for the delay can be

identified, The optimal solution is aohieved when the materials pass through,4

all serial units in the least possible time. Tests can be designed, and

oriteria for evaluation of the tests can be constructed by comparing measured

results to the optimal solution. In partioular, the method can be used to

produce speoific "target values" which constitute an objeotive yardstiok for

evaluations*

1. Introduction. The design and conduct of any test of new, liqprovedg or

modified Army materiel, concepts, force structu0e, or doctrine are governed by

a set of issues end criteria (Stevens, 1979), The issues are simply questipnis

about the performance, reliabilityg safety, usability, effioiency, or other

aspects of the tested item, The criteria are objeotive standards which the

tested item must meet if it Is to be judged acceptable for use (and for

proourement/distribution subsequent to testing). There is a rule of thumb

that says that the best test and the most objective evaluation will result

when the criterion is one which can be quantified and the test can produce

quantitative results for comparison to the criterion. Quantitative criteria

are often referred to in the test/evalustion literature as measures of

effectiveness (MOE) or measures of performance (HOP), although theme terms are %%1

often used more loosely than they should be (i.e., to denote subjective or

non-quantitative criteria). Together the issues and criteria form the

building blocks which govern the design of the test, execution of the test

plan, and analysis of the test data.

Quantitative criteria usually are obvious or follow logically from an

examination of the tested Item's purpose or Intended use. For instance, ir it

is desired to have a larger-caliber howitzer because more range is needed, one

of the test criterion should speak to the amount of improvement in range

(either absolute, in kan, or percent) whioh will be expected when the neow

howitzer is compared to the one it will replace. Indeed, for most funqtional

areas in the Army (infantry weapons, tube artillery, ground cop,,unicatione,

etc.), a set of "generic" issues and criteria can be developed. When the test
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item is prepared, the specific performance numbers can be added to the generic
criteria and the testing can proceed. Adherence to the criteria will be
especially important for some issues, depending on the function of the tested
item; these issues are designated as "critical" issues and the system will not
be judged acceptable unless it meets all the criteria for all critical issues.

* Thus the importance of having numerical, objective cWr--eria for critical
issues is clear.

In some Instances, however, it is not at all easy (even with logic and
common sensel) to determine objective or numerical criteria for a given test
item. This Is particularly true for items, systems, or concepts in logistics
and supply. Part of the difficulty arises because logistics cuts across all
functional areas rather than having a single functional area of its own with a
well-defined, limited mission. The questioti of logistics supportability
arises in the consideration of all Army systems, but the truth of the matter
is that it is never really addressed properly in testing. Typically, the only
logistics issue which is usually written is:

Issue: Is the test system logistically supportable?

And its associated criterion is almost always:

Criterion: The system must be logistically supportable.

From a logical point of view, the issue and associated criterion are
unassailable; the Army cannot tactically or economically afford a system that
the logistics supply system cannot support, no matter how well the system
works. However, it Is equally obvious that this issue and criterion are badly
flawed on several counts. First, the criterion begs the issue and does not
readily admit any other conceivable answer, which violates the principle of
objectivity in test design. Secondly, the criterion cannot be quantified, and
as the issue is written no quantifiable criterion can be readily determined.
These two factors alone would preclude any reasonable, objective, believable
test of the system's logistic supportability. TRADOC Independent Evaluation
Directorate (Ft. Leavenworth) has attempted on at least two occasions to
alleviate this problem by constructing generic issues/criteria for logistic
supportability, with appropriate measures of performance and/or effectiveness,
but these efforts have not succeeded because o. the exceptionally broad scope
of logistics problems encountered in Army test and evaluation.

Hidden within the problem of -esting logistic supportability is a dilemma
which is neither widely recognized nor completely understood by test
designers. It is true that a system should not (and In fact, often cannot) be
issued to the Army in the field unless logistic supportability is
demonstrated. Logistic supportability cannot be demonstrated until the total
complement of systems is fielded and the total supply system is exercised.
However, for testing and evaluation only a few systems (typically five or ten)
are procured, so the logistics support systems and procedures are never fully
exercised. This creates a chicken-and-egg dilemma: the total number of
systems desired must be purchased and deployed in order to demonstrate
"logistic supportability, but the decision to buy more than just a few systems
for testing cannot properly be made until logistic supportability is
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demonstrated by a testl This dilemma would be solved if a method for
assessing logistic supportability using a limited number of systems could be
found.

The answer to both these problems -- non-quantifiable criteria and the
dilemma of logistic supportability demonstration - appears to be in finding
an alternate way of looking at the logistics supply problem. "Conventional"
logistics analysis more or less relies on examining the quantity of supplies
in the supply system and their availability at various supply points.
Quantitative analytical tools and measures of effectiveness exist for
determining, how well the system works (Engel, 1980). However, the proper use
of these quantitative measures and tools depends on the full utilization of
the logistics supply system, which again implies full fielding of the
materiel. Thus conventional analytical tools are not expected to be useful in
resolving problems which fall outside of the situations for which they were
designed, and the implication is that new tools will have to be developed.

I1. Developmentof Least-Time Analyasa. There is an alternate way of looking
at the logistics supply problem. Instead of a conventional or "inventory"
analysis, in which the functioning of the supply system is determined by
monitoring the supplies on hand at certain points in the system, the
alternative is to examine the delivery time for supplies and analyze the
effects of the logistics supply system on the delivery time. On their face,
these two analyses would appear to be quite different; however, with a little
thought one can convince oneself that in fact they are really two ways of
looking at the same thing and should give the same results. The advantage to
avoiding any "inventory" analysis is that without the constraints of counting
supplies, the method should be easily extended to any quantity of supplies,
large or small, and the supportability dilemma may be overcome.

Using an analysis based on delivery time has the distinct advantage that
it can embrace a "guiding principle" of logistics supply that every soldier in ...

the field knows: Supplies and logistical materials delivered too slowly Are
worth no more than no supplies at all. To put this simply but graphically,
the ammunition delivered to the soldier in the foxhole is of no use if the
supply system is so slow that the soldier is killed before he gets it. This .
principle provides powerful motivation for the development of the method of
Least-Time Analysis.

The first step in Least-Time Analy3is is illustrated in Figure 1. Using a
map model, the flow of supplies from manufacturer (1) to depot (2) to port (3)
to foreign port (4) to staging area (5) to the using unit (6) is plotted and
the distances and travel times (including loading, unloading, refueling, and
all delays) ere noted. For convenience, the map model (upper half of Figure "'"'
1) is converted to a linear delivery model (lower half of Figure 1) Involving
only times and locations. This idea Is borrowed from Information theory and
is also called a Shannon model. The Shannon model is appropriate for this
because the flow of supplies can be modeling as linear or serial, supplies
flow in discrete units or packages which can be traned, and the locations of
the supply terminals are fixed but the travel time between them is
unconstrained.
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Once the times TI, T2,... have been determined from the linear delivery
model, a Space-Time diagram is plotted as in Figure 2. The location of each
"node" in the linear delivery model is plotted on the horizontal (X) axis and
is treated as a discrete variable with only certain allowed values (the
discrete values come from noting that depots, ports, etc. are fixed in
location and do not move frequently). Each location is represented on the
graph by a vertical line. Time is treated as a continuous, cumulative
variable and is plotted on the vertical (Y) axis. As shown, the time it takes
for the supplies to pass between two nodes is plotted on the graph, and a
curve is obtained fran which the total time (called delivery time) for
supplies to travel from the start point to the end point can be determined.
Delays at any location are represented as vortical gaps which make the
space-time diagram discontinuous.

III, Analysis using the Space-Time Diagram. After the space-time diagram is
constructed for the situation being considered, it is analyzed according to
three rules. These rules are based on the "guiding principle" of logistics
defined two paragraphs previously.

a) The optimal path for moving logistical materiel is the path for which
the space-time diagram gives the shortest delivery time.

b) Each segment of the optimal path is self-optimal; that is, each path
segment by itself takes the minimum possible time to go from Its
beginning point to its end point,

o) Any path segment which does not take the minimum time is not optimal.

It follows from these rules that test,, evaluation, and modification activities
need to be directed only (and especially) toward those actlvities which make
up the path segments which are identified as not optimal. These segments can *
almost always be identified as the "choke points" which hinder the proper and
timely flow of logistical materii.1s.

IV. Mathematical Foundation for Least-Time Analysis. Least-timo analysis was
inspired by a well-known principle of physics, Format's Principle of Least
Time (Marion, 1970). Fermat's principle was originally applied to optical ray
tracing, and later to classical kinematics and dynamics of moving bodies. Xt
states that if a system is initially in one state or condition, and at some
later time is in a different state or condition, the path taken to go from the
initial state to the final state will be the path which allows the transition
to occur lia the shortest possible time period. A formallsm called variational
calculus was later developed to describe these kinds of transitions between
statc.s Variational calculus is extensive and complexi only a few details
necessary to form the basis of least-time analysis will be presented here.
The notation follows the basic text on the subject (Gelfand and Fomin, 1963),
and the reader is referred to this book for further details.
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Consider the problem illustrated here: a bull is to roll rriotionlessly 4-:.**

on some path between points A and B. The path which allows the bell to
complete the trip in the least.
possible time must be
determined. This famous
problem (known 8s the
braohistoohrone problem) Is i;

A solved in many textbooks, ood
is referred to here beoause It

- illustrates the basic
s•* |tructure of all such

- problems. Both coordinates
OW 4are constrained; the locations

E or. points A, B are fixed in
both x and y. In the y
direction, the additional
constraint of a fixed force

S(gravity) is imposed. These
type problems are solved by
defining a functional

F(y(x),x;y' W)

where y(x) defines the curve which •rovides the leabt travel time between A
and B (called the optimal path), and y is defined by

YINx) yWx + Qri(x)() P

y(x) is assumed to be oontinuous, and yl(x) represents the functions which
describe all paths between A and B which are not the optimal path y(x). Th3s,1
"Nx) represents a "difference" function bhedween any non-ideal path and the

ideal path. ' is assumed to be small.

The task appears complioated because we do not know the optimal path y(x)o,
but rather are trying to solve for it. Recognizing that TT(x) can have an
infinite number of forms, the equation to solve is

* J: V(y(x)y,(x))dx (2)

so that __I(3

These two equations basically say the followingi Examine all possible
paths y'(x). For each one, look at the first derivative or J over the entire
path and find the extreinal path (first derivative equal to zero). If the
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first derivative beoomes zero when the value of r bhecomes zero, the function
y'(x) is actually y(x), the optimal path we are searohing for.

Gelrand and.Fomin demonstrate that the problem in mathematically solvnbh'
for virtually all y(x) and f(x), and they describe exhaustively how it is
done. For the purpose of least-time analysis, only 3 results need to be
noted,

a) There is always an optimal path, and it can always be found.

b) The optimal path is unique; there cannot be more than one "optimal"
path for a given set of constraints.

a) If y(x) is not continuous but Is piecewise continuous with n pieces,
the optimal path is found by substituting for JI

J VA )dx + F()dx + F ( )dx *(4~)fl oil+

This says that if a path is not continuoua, the optimal path can still be
found by finding the optimal path for each segment which is continuous.

This is sufficient to establish a mathematioal basis for least-time
annlyuis. Although the methodology clearly belongs to the class or tools
known as "critical path" methods, its development and motivation are quite
different from most methods in this class. In fact, least-time analysis
appears to be the first critical path method derived solely from,a variational
oelculus approach.

Before leaving this section, it is appropriate to compareleast-time
analysis with another and perhaps more familiar-critioal path method, Program
Evaluation Review Technique (PERT). As applied to logistics and siminnfnr
soheduling problems, PERT attempts to identify the slowest among multiple
paths so that coordination can be affected which will bring all the palMs-o a
aommon end point at the same time. Least-time analysis, in contrast, takes a
situation where a single path exists and attempts to identify the slowest
segment (or, perhaps, the-slowest among possible alternate paths) in order to
reduce the time required for (and thus optimize) the total path. Beosuse of
this essential differenoe, least-time analysis appears to have at least two
advantages over PERT: the dota requirements are less, and the answer derived

Jil..,from least-time analysis In unique (there is only one optimal path).

V. Aeplioation of Least-Time Anal yais, It is not necessary to use the V*Aq

extensive mathematical formalism behind least-time analysis in order to obtain 4,

useful results (although the existence of a mathematical background is
tantalizing for logistics modelers). Application of least-time analysis
requires basically four steps.

First, the level of application must be determined. Depending on how miuch
detail is desired in the analysis, the method can be applied to parts,
subassemblies, systems, supply classes, or adjuncts to systems.
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Next, a linear delivery model (Shannon model; see figure 1) is constructed
for the supply path at the chosen level of application. This model is used to
identify each handling step or path segment in the supply process.

Next, the time required for each step is determined. This determination
can be made by "desk-top" analysis, literature research, or
testing/ observation. When these times are known, a space-time diagram such as
figure 2 can be plotted.

Finally, from the space-time diagram and the principle of analysis given
in section 111, all path segments which ore not believed to be optimal can be
identified. If the time required for eaoh step was determined by a literature
search or by, desk-top analysis, appropriate issues/criteria for testing can be
written. If the times required for each step were found by testing or
observation, they can be analyzed to see If new Iasues/criteria or further
testing will be necessary. I

In addition to being potentially useful for attacking problems which are
not easily handled by other methods, least-time analysis fits nicely within
the conventional framework of logistics and thus allows quantification of some
concepts which are widely considered to be only qualitative in nature. For
instance, the logistician speaks of the three products of logiatios
readiness in time of pesos, ur at the outbreak of hostillties, and
sustainability until the fightin i-ended. Intuitively the meaning of these
terms is obvious, but they have not previously been quantified for use by the
test/evaluation community, Figure 3 illustrates how least-time analysis
combines with a little common snsne to make these terms quantitative.
Readiness represents the "relaxed" or "natural" state of the supply system,
with logistics materiel being delivered only at the rate required for normal
operation of the military unit. Hence the required times for easobtep (and
the overall delivery time) can be determined reliably and with high precision
from simple analysis of records already existing. In the surge mode, o he
curve on the space-time diagram flattens out greatly because the delivery time
for any materiel must decrease (note how this in equivalent to the
conventiondl method of representing surge as a drastic Increase in the
quantity of all supplies). In the sustainability mods, the curve is not as
flat because the delivery of supplies is not so critical as in the initial
surge, but the delivery time must still be shorter then in the readiness
phase. Using figure 3, the logistician could now quantify these - for
instance, by requiring the delivery time during surge to be one-half of the
delivery time during readiness. This gives the tester a quantitative way to
evaluate the logiatics supply system.

It is also of interest to note that some other types of information may be
extracted from a least-time analysis* For example, some estimate of
vulnerability of a system can be obtained by recognizing that the steps on the
supply path which require more time are more vulnerable to enemy attack and
disruption than steps which proceed more rapidly. The caveat to this is that
vulnerability is actually more complex and involves more factors than simply
the time spent on one path or In one place, so any vulnerability derived from
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least-time analysis Is strictly an estimate and should be used only with great .'

oare,

VI. An .Example: Logistics over the Shore, Logistics over the shore (LOTS)

was a major Army-Navy joint test which presented particular problems to the

test community because it initially loaked good issues, criteria, and measures
of effeotiveness or performance. Some retrospective analysis of LOTS using
least-time analysis will illustrate the usefulness of the method. LOTS
represented the sustainment phase of logisticats, with the beachhead secured and
the threat frao enemy fire or troops to logistics units not significant.
Using. several fully-loaded ships, the exercises made use of all possible
methods to unload cargo of all types and move it to the beaches in the most
expedient way possible. The test was to answer two general questions,

a) What is the moat efficient method among all possible ways to transfer
cargo from ship to shore?

b) Were is improvement needed in all methods to make them more
efficient?

The results of the test were assigned special significance because they
would be used to rewrite doctrine for beachhead supply and standard operating
procedures (SOPs) for logistics units In ship-to-shore operations, make
revisions to tables of organizational and equipment (TOEs), make possible
changes in force structure, and support production decisions for amphibious
lighters and other ship-to-shore wateroraft. Because of space limitations,
the example considered here is somewhat abbreviated and does not represent the ,
entire LOTS exercises.

The decision was made to break down the analysis to the "type of cargo"
level, and accordingly the first two cliases to be considered were.breekbulk
cargo and containerized (non-liquid) cargo. Figure 4 shows the linear
delivery model for breakbulk oargo, constructed to show all possiole
combinations of handling methods used to transfer the cargo from ship to
shore. Analysis then shows that containerized cargo is handled in exactly the
same ways, so the linear delivery model would be the same.

For breakbulk cargo, several questions oan immediately be generated from

figure 4. These include.

a) Which path represents the most efficient delivery method?

b) Whet improvements can be made to each path to decrease its delivery
time?

o) What safety hazards are present on each path?

d) Is sufficient equipment and rigging available to execute all paths
without delay?

123

4. 4*.~ a .*.a 1P % X~~~ %~aaaa ;Ki;:

%~ j ,P3

i~o"I eý;.W Xr



SI' ' •

6W~~' LA* L C

- . L

cl

'124 FIGURE 4

.him = I.•.• ,. •. -• .. -•. -+• ... '• ~ •' 'J'•i' ' % •i•• .y '' ','•%•'•'i J', ,' ., l•,',' l

Pli ll-li• qll II i/l" llJit i~i ~ l< ' - I. ~ill-i l. I" i"! •II l l.FII II tlI I4 II pI i•- !I i• • ii Ii 'l iI i, III II IliI LIl

I " --I " " " C.. . . _ '- #•' " " " " " "• 1, • l - ! I i l i k 1 • i 1 •t •i! " i I • , I



And, when contaiLnerized cargo is consiLdered, the above questions remain .,.•

aind there are aidditional questionls:,,•

e) Is it mope efficient to move oont, ainerixed eargo than breakbulk cargo? I•L

f) What improvements to breaikbulk ocargo haindling would iLncreaise its
efficiency to be competitive with containerized cargo handling? •k

A combrination of testing aind desktop analysis would be used to construct
sacme-time diagsrams (or eacoh pith and oro eaoh cairgo type, and from the~o •
diagrams the questions listed aibove could be turned into testable issues with •i•
quaintitative criteria. As either a test planrinEri aid or a data analysis aind, '
least-time analysits is very useful because the problem could not easitly be •,
aittacked with any other method available. The analysis would be contitnued in [!
the saime manner for aill other types of cargo (gaslione, vehicles, etc.). ,

VI. Conclusi~on. As atated in the abstract, lesat-time analysia is still in •ii,
development. It hase demonstrated its usefulness in generating Issues and
criteria for logistics-related testring, and it show some promise of being ;;•
useful to logistics systems designers and modelers. Much of it. utility comes :,
frau the property of fitting into a conventional frmework of lOgistics (that •:
Is, hav~in the sane point of view and not requiring new language or ways of '
thinking about logistics) but taking a somewhlt different approach thanr
conrventiLonal methods or analysis., Part or' its stbrength comes f'rom i[ts solid '
mathematical foundation, and future deveiloment will involve further i•
exploration of the underlying mathematics to identify useful reuluts whlich •[
increane the method's applicability. ,
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COMPARING SHOCK SENSITIVITY FOR TWO EXPLOSIVES

Gary W. GOemmilll
and

Audrey E. Taub

Naval Surface Weapons Center
Dahlgren, Virginia 22449 N

ABSTRACT

A procedure for comparing shock sensitivity of two explosives for
small sample sizes is described, In this context, shock sensitivity
refers to the probability of detonation when in explosive unit Is
exposed to a shock stimulus, The comparison between explosive
sensitivities Is made by testing the hypothesis that the 100pth
percentile of the population of critical shock values for a standard
explosive is greater than the 1O0pth percentile of critical shock
values for an experimental explosive. The logistic function Is
assumed as the distribution function for both explosives, and equality
of variance (parallelism) between distributions need not exist, The
procedure utilizes three fixed levels of stimulus to which explosive
units are exposed and a quantal response, detonation or
non-detonation, observed for each. Monotonized and truncated
estimates of the detonation probabilities are used to compute minimum
logit chi-square estimates of the logistic function parameters for
each explosive, The test is based on the estimated difference between
the lO0pth percentiles of the two explosives, Monte Carlo simulation
has been used to evaluate the discriminatory power of the procedure
over a wide range of parametric values. Examples are given for
comparisons made at the 20th and 10th percentiles.

1. INTRODUCTION

During the development of experimental explosives for gun-fired

projectiles, one of the critical concerns is the sensitivity of an

explosive to shock. Shock in this sense re4ers to the rapidly .,

developed pressure that the explosive sees when it Is loaded Into a

projectile, and fired from a gun. If the explosive Is sensitive to

this type of shock, a premature dotonation may occur. The explosive

will detonate while the projectile is still In or Just being expelled

from the gun barrel. This, of course, Is A very hazardous and
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undesirable situation.

In order to test explosives for shock sensitiulty, a premature 2

simulator test facility was fabricated at NSWC, Dahigren, Virginia.

The simulator essentially consists of a 1000 pound drop vehicle which

can accommodate a scaled down projectile loaded with explosive. The ~ .~

test Is conducted by dropping the vehicle and projectile from a

predetermined height onto a heavy steel plate. At Impact a plunger 0q

is forced Into the projectile thus simulating the rapidly increasing

pressure that occurs in conventional gun systems. The test result Is

either a detonation or non-detonat Ion... For each test unit the

observed outcome is associated with a given drop height. This kind of

data has been collected for standard explosives which are used in Navy

projectiles. Newly developed experimental explosives are also tested

for shock sensitivity In this manner. A requirement exists for a

procedure which can collect and analyze this data to determine 14 a

given experimental explosive Is less sensitive than a standard A

expl osive.

2. EXPERIMENTAL CONDITIONS AND ASSUMPTIONS

The experimental conditions and assumptions under which this

comparison will be made are as 4ollowsi

a. The response Is a quantal-type response; that Is, there Is

either a detonation or no detonation. This quantal response Is

related to the drop height stimulus level by some probability

distribution. This probability distribution governs the probi'~ility

of detonation for all drop heights for a particular explosive.

b. Knowledge of the standard explosive Is assumed both with

respect to the type of distribution and also the value of the

distribution parameters. This Informatinn will have been gained

128

. . . . . . .. .%



through sufficient testing of the standard explosive.

c. The experimental explosive is an unknown. For the purposes of

the present discussion we shall assume that It has the same type of

probability distribution as the standard. However, the robustness of

this assumption is a question which can be investigated under the

proposed comparison procedure. The values of the parameters of the

experimental distribution are unknown.

d. The number of test units of the experimental explosive is

severely restricted. The number of units available will be between 10

and 15, This restriction arises mainly due to a high cost per test

and the large number of test conditions that need to be evaluated.

e. The measure of sensitivity Is defined as the 100pth percentile

of the probability distribution for a particular explosive,. where

O<p(.5. That is the value of drop height (stimulus level) at whiSch

lOOp percent of the population of experimental units would detonate.

The smaller the value of the lOOpth percentile, the more sensitive Is

the explosive.

f. The comparison procedure should protect against selecting an

experimental explosive over the standard explosive unless the data

indicates with high probability that the experimental is less

sensitive than the standard.

3. INITIAL EFFORTS .

A computer program was written whereby sensitivity test data could

be simulated and analyzed under certain distributional assumptions and

for particular data collection designs. A normal distribution was

assumed as the governing probability distril' ýI-. Available data

provided no evidence to seriously question this assumption. Maximum

likelihood estimatic, was used to estimate the parameters of the
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distribution for the experimental explosive.

Three data collection designs, the up-and-down, Langlie and probit

designs were evaluated for sample sizes of 10 and 20. A brief

description of each design is given below. More detailed information

can be found in references 49 5 and 6.

The up-nd-on design consists of choosing a starting height and

test increment. Then the stimulus level is raised or lowered by the

amount of the test increment according to whether a non-detonation or

a detonation, respectively, was obtained on the previous test.

The Lanalle design requires choosing two heights initially, one

at which no test units are expected to detonate and one at which all

test units are expected to detonate, The first stimulus level is the

average of these two heights. Subsequent heights are chosen based on

tho type and sequence of outcomes from previous tsts., Accordingly,

the next stimulus level is obtalned by counting backwards until a

prior stimulus level is found which has inclusively encompassed an

equal number of detonations and non-detonations. The average of this

stimului level and the most recent stimulus level becomes the next

14vel. If no such prior level can be found then the next stimulus

louvl Is obtained by averaging the most recent stimulus level with the

upper bound or lower bound depending on whether the previous outcome

wis a non-detonation or a detonation, respectively.

The nrobi design is the simplest of the three and requires only

that a prescribed number of stimulus levels are chosen a a

designated number of Items are tested at each level, Data collection

desigr a o; this type are usually associated with probit analysis which

is discussed Ii refoerenc 5.

The maximum likelihood estimation procedure requires that a zone
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of mixed results (ZMR) exists in the data before estimates of the

parameters of the distribution can be estimated. A ZMR is simply an

interval on the stimulus scale defined by the maximum non-detonation

and the minimum detonation where the former exceeds the latter. Table

I shows the percentage of simulated evaluations of a total of 400

which actually yielded ZMR's or usable data under optimal deusign

conditions.

Probability of ZMR

K UnLLown Lanallef~n.S
10 MeX 7WX 'OX
20 POX OV 95

For the probit design the values of N were actually 9 (3 observations

at each of 3 stimulus levels) and 21 (3 observations at each of 7

stimulus levels). As one can see the percentage ... 04 time that

estimates were not obtainable ranges from 40X to 28X for 4 sample SiRe

of 10. A sample size of 20 performs somewhat better. However, the

figures shown are for optimal choices of design parameters. The

choices for these design values must be made with respect to the

unknown parameters of the distribution for the experimental explosive.

This makes an optimal choice unlikely. For less than optimal choices

of the design parameters the percentage of time a ZMR is obtained may

go as low as 40X,. This is unacceptable.

4. PROPOSED PROCEDURE

Based on the preceding results, we turned to a different

distribution, the logistic functiong and a different estimation
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technique which can be easily applied when using a probit design. The

logistic function closely approximates the normal distribution and, as t.

stated In reference 5, there is little difference between conclusions

drawn from an analysis besed on either distribution. The cumulative

distribution function is

p a 1/0 4 exp(- 0 -B x))B

where a and $ are distribution parameters, x represents the value of

the stimulus level (height), and p Is the probability of detonation

for a test projectile dropped froMheight x, The function is~easily

linearized by taking the logit p a l n(p/q), where q a 1-p to obtain
L w logit p a ln(p/q) + c ÷ 5 x,

The parameters of this. distribution can beestimated-using the minimum

logit chi-square technique. The probit design is particularly

appropriate for this estimation procedure, especially for the small

sample size restriction. The lOOpth percentile can then be -estimated

by substitution In the linearized form and solving for ) to get

x(p) m lOOpth percentile a (ln~p/q) - V )/ .

This application was discussed by J. Berkson 'in references 2 and 3.

The comparison hypothesis is stated as followsi

Hi The lOOpth percentile of the standard explosive is greater

than or equal to the lOOpth percentile of the experimental

explosive.

Accepting H, of course, Implies that one concludes the standard

explosive is less sensitive than the experimental explosive. The

alternative hypothesis isl

"H(a)t The lOOpth percentile of the standard explosive Is less

than the lOOpth percentile of the experimental explosive.

The alternative hypothesis is accepted if H Is rejected and this
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conclusion implies that the standard explosive is more sensitive than

the experimental explosive. We assume that the distribution

parameters, S and 13S , for the standard explosive are known.

Therefore, the lOOpth percentile for the standard distribution, S(p)

can be calculated.

A number, n (less than or equal to 5), of experimental explosive

units are tested at each of three equally spaced heights making the

total sample size, N, equal to 3n. An tstimate of probability oM

detonation, p, is obtained at each height by dividing the number of

detonations at that height by n. These estimates are monotonied to

be non-decreasing thus satisfying the requirement of a non-decreasing

cumulative disArIbution function. Monotonization, In this respect,,is

discussed in reference 1. Probability estimates of I and 0 may occur

because of the small sample sizes used, When this happens a

substitution must be made so that the logit value can be computed.

The values of .95 for I and .05 for 0 are recommended as truncated

estimates to be substituted In such Instances. These values were

chosen based primarily on an empirical 'rule given in one of the

earlier Berkson papers and the fact that they provide a workable

result .for the small sample sizes of interest. Estlimates of aE and BE

for the experimental explosive can then be computed using the minimum

logit chi-square techniques given by Berkson in reference 3. These

estimates are designated a and b, respectively.

If b is non-zero we can estimate the iOOpth percentile, E(p), of

the distribution for the experimental explosive by substitution as

shown,

E(p) - (Sn(p/q) - t)/b.

The estimated difference between the lOOpth percentile for the
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standard explosive and the lOOpth percentile for the experimental

explosive is given by

D w S(p) - E(p).

The variance of this difference Is given by

s m C/b 23 I(1/Enw) 4 (G/E nw(x - )2 3

where

r w a p(-4 x m drop height, 1 * nwx/E nw and 0 w Or - E(p)) 2 .

The summation is taken over the three values of height. We shall

reject H if 0 is less than or equal to cos-where c is chosen by the

experimenter to give an acceptable probability of rejecting H when It

Is actually true, This is a Type I error and for the stated H Is

equivalent to rejecting the standard explosive when It is actually

less sensitive than the experimental explosive. The value of c Is

chosen to be negative because we want to reject H with low

probability if H is actually true, If D is greater than c*s, all

possible test outcomes with more detonations at the test level of

greatest stimulus must be considered before H can be accepted. If any

lead to a rejection, H must be rejected, The rationale for this Is

that If any of these more sensitive outcomes yield a rejection of H

then less sensitive outcomes should not contradict that result by

accepting H.

Figure I is an Illustration of the comparison procedure for the

S *X
caste where b is non-zero. The stimulus levels have been scaled in

approximate units of the standard deviation of the distribution for

the standard explosive. The experimental explosive was tested at

stimulus levels of 11 2 and 3. 8(.2) and E(.2) represent the 20th

percentile and the estimate of the 20th percentile for the standard

and experimental explosives, respectively.
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An alternative procedure Is required when b a 0 since we then

cannot estimate a 1O0pth percentile for the experimental explosive.

Consequently, we assume all experimental tests ape conducted at the

lowest of the three test levels. The lowest test level Is the level

o4 least stimulus and, therefore, the level with the least probability

o4 detonation. This Is a conservative position In terms o4 the

experimental explosive, 14 all tests had been done at the lowest test

level (LTL), certainly no greater number of detonation% would have

occurred than the number actually observed. Next we compute an

estimate, 0, for the probability of detonation at this stimulus level.

An upper 9OX confidence bound for the probability o4 detonation at

this test level Is computed and, 14 necessary, truncated at .95. The

logit of this upper confidence bound Is calculated and designated as

the logit truncated bound or LTS. The LTI value is substituted Into

the logit function for the standard explosive to estimate an upper

bound for an equivalent stimulus level, 3p).,l required by the standard

explosive. 1f the difference between this equivalent stimulus level

and the lowest test level, D G (P).- LTLi's less then R, then H Is

rejected. As with c, k Is chosen as a negative value In order to

achieve. an acceptable probability o4 rejecting H when It Is true. The

value o4 k must be adjusted In magnitude when the value @4 the lowest

test level changes.

Figure 2 Illustrates graphically the procedure for b * 0. This

example Is for a design with test stimulus levels 04 1, 2 and 3 and

the stimulus levels have been scaled as before. LTL represents the

lowest test level and 9C'P) represents an estimate of an equivalent

stimulus level for the standard explosive.

135

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ... ..~. ...... ,*.* ''\ ,~b*I~~ ~ 4 t .h% ..



5. EVALUATION OF PROPOSED PROCEDURE

Computer simulation was used to evaluate the proposed procedure.

A computer model was written to generate sample data from an

underlying logistic distribution for the experimental explosive. The

simulated data are then compared to a nominal standard explosive using

the proposed procedure. The comparison procedure determines an

acceptance or rejection of the hypothesis H. By replicating this

process many times one can obtain an ;-%timate of the probability of

accepting H under a given set of distr-butIonal assumptions,

The main objective of the evaluation was to demonstrate the

feasibility of the proposed comparison procedure and determine the

acceptance/rejection behavior over a wide range of distributional

assumptions for the experimental explosive. The distribution for the

nominal standard explosive was chosen to be a logistic distribution

with a S 8 1.668, These parametric values were chosen because

they matched a logistic distribution to a standard normal distribution

(mean w 0, variance a 1) at minus one-slima and plus one-sigIa

abscissa values, This, In effect, provided a standardizat-ion with

respect to the parameters of the standard explosive. In order to

pursue . the evaluation %ystematically with respect to possible

experimental distributions, two relative quantities, R and delta, were

defined. R represents the ratio of 0 to 0 and is equivalent to the

ratio of the standard deviation of the experimental explosive to the

standard deviation of the standard explosive. Experimental

distrliutions with values of R from .5(,5)2(1)4 were chosen to cover a f

wide range of relative variation. Delta represents the median of the

experimental distribution minus the median of the standard

distribution, that is, delta a E(.5) - S(.5). This provided a
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convenient means 04 relating an assumed experimental distribution to

the standard distribution with respect to location. For each value of

R the evaluation was done foi, values of delta from -1(.5)2(1)5. This

gencrated 60 experimental distributions to be compared to the standard

distribution.

Two probit designs were selected #or comparison. The first design

used stimulus levels of 1t 2 and 3, c n -1.5 and k a -1.5. The second

design used stimulus levels of 3, 4 and 5, c w -1.5 and K * -2.5. In

terms of the assumed standard distribution, the stimulus levels for

the first design correspond to approximately one-, two- and

throe-slima units above the median value, whereas the stimulus levels

for the second design correspond to approximately three-, 4our- and

flvo-slgma units above the median value, These designs were chosen

with the idea of 'overtesting' the experimental explosive, 'This was

an attempt to provide additional protection against rejecting the

standard explosive unless the experimental explosive were clearl-y loss

sensitive. The values of c and K wore determined empirically by

running the simulatii with arbitrary trial values. Both designs were

evaluated with p a .2 for all 60 combination% of R and delta.

Additlonally, the 4irst design tas also evaluated with p a .1 for all

combinations of R and delta. The evaluations were done with n n 5 and

10 which correspond to total sample sizes o4 15 and 30, respectively.

The probability of acceptance of H was estimated 4or a particular

condition by replicating that condition 900 times. This number of

replications ensures that the estimated probability is within .03 of

the true probahility with 95X confidence,
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6. RESULTS

The results are shown in Figures 3-11. For both sample sizxs

eAch figure displays the plot of estimated probability of accepting H

versus delta for a particular design, R-value and p-value. Figures

5-5 and 6-9 show the results for the first design for p-values of .2

and .1, respectively. Figures 9-11 show the results for the second

design for p a ,2. Only the results for R-values of ,51 1 and 4 are

shown in the Interest of saving space. These R-values, however,

encompass the range used In the evaluation and are sufficient to show

the effect of relative variation upon the estimated probability.

As stated above delta is the median of the probability

distribution for the experimental explosive minus the median of the

probability distribution for ti'e standard explosive, For an

experimental explosive with specified variability, a decrease Itn

sensitivity Is associated with an Increase In delta. A comparison

procedure based on sensitivity, as defined previously, should yield a

decrease in the probability of accepting the standard explosive as

delta Increases. Also, a particular value o0 delta exists below which

H is true (the experimental explosive Is more sensitive) and above

which H Is false (the standard explosive is more sensitive). The

probability of accepting the standard explosive should go from one to

2ero at this value of delta, of course, for an Ideal comparison

procedure. These critical values of delta aresgiven in Table 2 for

the indicated values of R and p.
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Critical Deltas

0,5 -.64 -e42
1.0 0.00 0.00
4.0 2.95 2.49

The closeness to which the procedure approaches the ideal varies

for the illustrated examples. The capability to discriminate between

explosives of different sensitivity Is reasonably precise for the -1
situations where the variation of the experimental explosive Is less

than or equal to the variation of the standard explosive, that is,

when R a .5 and 1t This Is shown in Figures 30 4, 6 and 7 for the

first design and Figures 9 and 10 for the second design. The

probability of accepting the standard explosive drops quickly as the

sensitivity of the experimental explosive lessens, that is, as dolta

Increases. When the variation of the experimental explosive exceeds

the variation of the standard explosive, that is, when R 4 4, the t

discriminatory capability is much less precise for both designs as

shown in Figures 5, 9 and il, Here the probability of accepting the

standard explosive lessens very gradually as delta increases,

Because of the severe consequences of Incorrectly rejecting the

standard explosive (Type I error), specific measurepi were incorporated

to reduce the probability of this happening. However, as a result of

reducing the probability of a Type I error, the probability of

committing a Type 11 error is Increased. In this context a Type I1 rt
error means accepting the standard explosive when the experimental I,

explosive is actually less sensitive. This effect is clearly

demonstrated In Figure 3. In this case the standard explosive and the
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experimental explosive art of equal sensitivity when delta Is -.42.

This is the critical value of delta f'rom Table 2 for R - .5 and p .

.2. For delta less than -. 421 H is true. That Is, the standard

explosive is lets sensitive than the experimental explosive and should

be accepted. The probability of doing that Is near I for delta

smaller than -,42, As delta Increases to ,5 (the experimental

explosive becomes less sensitive than the standard) , the probability

of acceptring H remains high. Under these conditions a Type 11 error *

would be very likely because H Is not true but would be accepted with

high probability. In termis of explosives, this means the standard is

more sensitive thin the experimental but would be accepted with high

probability. Howevtrl this kind of error Is nwtt as serious as

Incorrectly reJecting a lses sentitlve standard explosive in favor of

accepting a more sensitive experimental explosive (Type I error). The

price for keeping the probability of a Type I error small Is accepting

an Increase In the probability of a Type I1 error. For both designs

the desired small probability of a Type I error Is attained for R m .5

and 11 and, as expectedl this is accompanied by a relatively large

probability of a Type 1I error. Additionally, the large probability

of a Type 11 error extends over a greater range of delta for the

second design. Ihis Is an effect of the Increased stimulus values

used in the second design, When the variation of the experimental

explosive becomes relatively large, that Is, when R i 4, neither

design produces small probabilities of a Type I error, This is

particularly true as delta approaches the critical value. This was

noted earlier In the comments concerning precise discrimination

between explosives with different sensitivities. This is caused by

the relatively large variability of the experimental explosive.

140

CAN'.

i" l • l•* *el I •,.• Ii •i d ll i I i • mIIii• I IllIi •i* t -. I t"•I" * ~l* t .111•, I"i ip I Il * U I*ilI1 U J P- I .II~l *] * * J IJ I. l it' *..t . l I ' • * ' " Illt
a IiI* U.iIIiIi j I l q* !•* * Il . *.I el I **••IiI _1 )P • I•"1 1 • wlIII•l~~~, ** .• I% "e IU U .*i Ul



Smaller values of c and k would decrease this probability of a Type I

error but the precision of the discriminatory capability would remailn

low. Decreases in c and k may cause an intolerable increase in the

probability of Incorrectly accepting the standard explosive for

R-values of .5 and 1.

The two values of p used with the first design provide an

opportunity to observe the effect of the value of p upon the

comparison procedure. The probability of accepting H for p a .2 is

equal to or slightly lower than the probability of accepting H for p 4

.1 across all values of delta. This means that for delta less than

the critical value, the probability of wrongly reJecting the standard

explosive is greater for p a .2. When delta is greater than the

critical value, the probability of wrongly accepting the standard k

explosive is greater for p w .A A comparison using the smaller value

of p would be of more interest and consistent with maKing the Type I

error probability small. However, choosing ton small a value of p may

result in a less precise comparison, Additional simulations would be

needed to offer more understanding of this situation.

Comparing the simulation results for the two sample sizes shows

that for most values of delta the Type I and Type 11 error

probabilities are less for n w 10 than fop n u 5. This would be

expected since the rejection values of c and K were held constant for

both sample sizes. Howeverl some exceptions do exist for certain

regions of delta. These exceptions are also dependent upon the value

of R. Ideally, the probability of accepting the standard explosive

would be greater for n w 10 than for n m 5 when delta is less than or

equal to the critical delta. For delta values greater than the

critical value the reverse would be true, The probability of Type I
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and Type II errors would then be less for the larger sample size in

all cases. One can note that for R - .5 and I the curves for n - 10

cross below the curves for n = 5 after the critical value of delta has

been reached. This means that for delta between the critical value

and the cross-over point the probability of a Type II error is greater

for n a 10 than for n 5. When R = 4 and the variation of the

experimental explosive is larger than the variation of the standard,

the two curves cross before the critical value of delta. Here the

probability of wrongly rejecting the standard explosive (Type I error)

"Is greater for n a 10 than for n a 5 when delta lies between the

cross-over point and the critical value. Adjustment could be made on

the values of c and k to reconcile some of the apparent anomalies

between the sample sizes. However, the effect of any adjustment is

dependent upon the value of R. If adjustments are made to force a

more consistent response for R = .5 and 1, the anomalies art spread

over a greater range of delta for R w 4, and vice versa. This is one

of the difficulties imposed by the Initial ground rules which allow

for differences in the variation for the' standard and experimental

explosives.

'a 7. SULflARY

"The proposed procedure offers a methodology for comparing an

experimental explosive to a standard explosive with respect to

sensitivity under the stated ground rules. The procedure is

particularly applicable to a situation where a limited number of

"experimental test units are available. The results of the simulated

Sexamples demonstrate the discriminatory capability of the comparison

procedure. The computer model written to simulate the procedure can
01
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be used to determine optimal design parameters with regard to

probabilities of Type I and 11 errors. Also, the simulation model can

be used to evaluate robustness of the procedure with regard to the

assumed prcbabliIty distribution of the experimental explosive.

In conclusiono the proposed procedure appears to provide L

reasonable answer for every set of test outcomes. Aiditlonallyv by

properly choosing values for the design and test parameters, the

required protection against Type I and 11 errors can be obtained.

This is a decided Improvement over current comparison procedures being

used In sensitivity testing of new explosives.
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HULTIVARIATE DATA ANALYSIS APPLIED
TO SKINFOLD MEASUREMENTS AND THE PERCENTAGE

OF BODY FAT FOR BLACK AND WHITE MALE SOLDIERS

Karen Patricia Hobson, MAJOR, USA
Army Medical Specialist Corps

Chief Clinical Dietetics
Nutrition Care Division

Willism Beaumont Army Medical Center
El Paso, Texas 79920-5001

Eugene Dutoit
O/BA Branch

Directorate of Combat Developments
US Army Infantry School

Fort Benning, Georgia 31905-5400

ABSTRACT:

The first author conducted a study to Investigate racial dlfferenoes In skinfold
thickness measurements and the calculated percent body tat for normal weight and
overweight soldiers, It was hypothesized that there was no -significant
differences between skinfold measurements and percent of body fat between black
and white soldiers. Multivariate analysis of variance and discriminant analysis
was used to analyse the data and test tne experimental hypotheses. Different
combinations of dependent variables were considered in the analysis to
Investigate the consistency of the statistical decisions between and within
racial and weight groups. This study shows that the multiveriate procedures
used yielded consistent decisions for various combinations of the dependent
variables.

INTRODUCTION:

Nutritional assessment using skinfold calipers to evaluate leanness/fatness
has been used extensively since the development of calipers. For several years
the United States Army has used akinfold measurements to screen its members for
leanness/fatness and physical fitness. When an individual exceeds the weight
for height required maximum, that person is evaluated on the basis of a
percentage body-fat standard.

This research was designed to compare and evaluate the skinfold measurements
,and body-fat percent determination of male soldiers. It was hypothesized that
(a) there is no significant difference between skinfold measurements taken from
bleack soldiers and those taken from white soldiers, and (b) there is no si~nifi-
cant difference in percent body fat between black soldiers versus white soldiers
as determined by the established method. Skinfold measurements were made during
routine physical examinations on basic trainees, and during an overweight
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soreening of career soldiers. Each group was divided by raoe and age.

PROCEDURE: .'.

Subjeots for the study were male soldiers at Fort Banning, Georgia, between
17 and 39 years of age. The purpose and procedures involved in the study were
explained to eaoh soldier before the participant signed a volunteer consent
form. Four hundred fifty-two soldiers volunteered for the study. However, only
302 soldiers were used because those over 40 years of age, or members of other
ethnic or racial groups were not included in the analysis.

Subjects were divided into two groupsa Group I - young trainees from
Regular Army, National Guard, and Reserve units who had Just completed seven
weeks of infantry basic training and Group I1 - career soldiers from an infantry
brigade who had been identified as overweight by Army height-weight tables.
Subjects for Group I were selected at random during a routine physical examina-
tion. The number of each race per group was kept equal for statistical
comparisons, Each group in subdivided by race. Race was determined visually,
by questioning the participant, and from medical history forlis. The composition
of each group is given in Table 1.

TABLE 1. Distribution of the Subjects by Race & Age

(NORMAL WEIGHT) (OVERWEIGHT)

Number of Group I Group 11
Age (Yra) Subjects Black White Black White

1T-22 208 92 92 12 12

23-29 84 21 21 21 21

30-39 10 5 5

TOTALS 302 113 113 38 38

ANTHROPOMETRIC MEASUREMENTS:

Height was measured In stocking feet with feet together, back and heels
against the upright bars of a height scale, head in the Frankfort horizontal
plan ("look straight ahead") and stand erect ("stand up straight"). All weights
were recorded to the nearest quarter pound. ,

Four skinfold thickness measurements were taken with a Lange skinfold
caliper calibrated to exert a pressure of lOg/sq mm of jaw surface. All
skinfold measurements were taken by the first author. All measurements were
taken on the right side of the body, with the subjeot standing. The sites
selected were as follow:

1. Biceps: over the midpoint of the muscle belly with the arm hanging
vertically at rest.
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2. Triceps: over the midpoint of the muscle belly, midway between the
oleorenon and the tip of the aoromion, with the arm hanging verti-
oall7 at rest.

3. Subsoapular: Just below the tip 0of the inferior angle of the

soapula, at an angle of about 45 to the vertical.

4. Suprailiao: Just above the ilia* crest In the mld-axillary line.

A reading was taken and recorded at each of the four skinfold sites and then
repeated twice more in suocession. Readings were taken to the nearest 0,5Mm.
The three readings at eaoh site was averaged to the nearest tenth of a
millimeter and the average values totaled to give the sum of four sk.infolds for
obtaining percent body-fat imlue from the Durnin and Womersley table (Reference
2).

ANALYSIS OF DATA (.GENERAL):

The data analysis was conducted using the statistical package for the Social
Sciences (SPSS) Update 7-9. The normal plots for the different variables in the
study all had linear trends Indicating normal distributions. The test for
homogeneity of the varinoe/oovariance matrioies, Wilk's Lamda and Bartlett's
test of spherioity were some oat the statistical tools used in the analysis.
Hypothesis testing was oonduoted at the 5% level of significance.

RESULTS AND DISCUSSION:

1. Analysis of Group 1 (Normal Weight Group).

The results of the data analysis for the normal weight group are shown
in Table 2 (next page). The differences are marked by an (C). These
differenoes in skinfold measurements are examined more closely in Table 3 below.
The dependent variables are the skinfold measurqs and the independent variable
is race (i.e., black, white),

TABLE 3. DIFFERENCES BETWEEN BLACK/WHITE
NORMAL WEIGHT GROUP

VARIABLE UNIVARIATE MANOVA CORRELATION
F P BETWEEN DEPENDENT

AND CANONICAL VARIABLE

sa .o,

THICEP 25.6- .000 .80 - RELATIVE
Wi MAGNITUDE

BICEP 16.7 .000 .64 R- RELECTS -UNIVARIATE ,.-'

SUBSCAPULAR 1.2 .280 .17 RESULTS

SUPRAILIAC 9.5 .002 .49
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2. Analysie of Group 2 (Overweight Group).

Similar data foir the overweight group are shown in Tables 4 (next page)
and 5 below.

TABLE 5. DIFFERENCES SE1WEEN BLACK/WHITE
OVERWEIGHT GROUP

VARIABLE UNIVARIATE HANOVA CORRELATIONV
, p BETWEEN DEPENDENT .

AND CANONICAL VARIABLE

TRICEP 20.,4. . 4904- RELATIVE
MAON!TUOE

BICEP 6.2 .015 .52 REFLECTS
UNIVARXATE

SUBSCAPULAR 3.0 .087 .36 RESULTNAA

SUPRAILIAC 6.8 .011 .5-

3. 3ummiry.

For both the' normal and overwight groups there Is a consistent "
.differenoc between the block and vhite soldiers with respect to -skinfold
measurements of the. triaeps, biceps, end suprailiao, The *white -soldiers -have
oonsistoently larger measurenlents on these variables,
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4. Excursion 1. Consistenoy of HANOVA Results for Normal Weight Group.
," ..1p

The conasitency of the MANOVA for detecting differenoes between rioml-
groups (black, white) and identifying the variables which oontributed to these
differenoes (skinfold measurements, percent body fat) are indicated in Table 6.
Note thaot the results are consistent for the five oombinations of variables
using MANOVA and univariate t-tests (combination d). Combination (e) is the
MANOVA that considers all the variables examined in the previous combinations.
The variables which are identified as contributing to the differences between
the races for the normal weight group are oompletely consistent with the
findings of the other combinations (a through d).

TABLE 6
EXCURSION 1: NANOVA CONSISTENCY WITHIN NORMAL

WEIGHT GROUP - BETWEEN RACES

VARIABLES WILKC'S RELATIVE MAGNITUDE OF
CONSIDERED CORRELATION BETWEEN
IN MANOVA SPHERITY DEPENDENT AND CANONI-
____.___ ...... __CAL, UNIVARIATE F

(a) Skinfold.only 35.7 639 .8a8 TRI, BICE?, XLIAC
0.000 O.0100 0. 000

(b) HNt Wt only 2.90 79.1. .987 No Difference
".41 0.000 .15,

(a) a and b above 39.3 _88. 1 .787 T11,. IC ILIAC
.01 o 0.000 0000-

(d0 5 Body fat and 2 Separate T-Tests % Body Fat
Age

(e) a, b, d above 161.5 1566 .780 TRl, BICEP, ILIAC
0.000 0.000 0.000 % Body Fat

NOTE: (Statiatic/P value) -

5. Eyoursion 2: Consistency of MANOVA Results for Overwei-sht Group Table 7

The same findings were obtained for excursion 2 (see excursion 1). The
same variables were identified as contributing to differences between the raeial
group, and the results were consistent for all combinations of factors
considered tn the different analysea (a through d).
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TABLE 7
EXCURSION 2: MANOVA CONSISTENCY WITHIN OVERWEIGHT

GROUP - BETWEEN RACES

VARIABLES WILK'S RELATIVE MAGNITUDE OF
CONSIDERED CORRELATION BETWEEN
IN MANOVA SPHERITY DEPENDENT AND CANONI-

L. ._ ------- CAL|.UNIVARIATE F

(a) Sklnfold only 7.6 121.4 .T61 TRI, BICEP, ILIAC
".714 0.000 .001

(b) Ht, Wt only 3.6 74.2 .989 No Difference
.320 0.000 .674

(W) a and b above 18.2 239.8 .754 TRI, BICEP, ILIAC
.737 0.000 .003

(d) % Body fat and 2 Separate T-Tests 5 Body Fat
Age

% (e) a, b, d above 46 450.1 .734 TRI, BICEP, ILIAC
.273 0.000 .006 5 Body Pat

NOTE: (Statistic/P value)

6. Excursion 3: Factorial MANOVA.

A full factorial MANOVA was conducted on the independent variables of
race (blaock, white) and weight group (normal weight, overweight). The dependent
measures were the four skinfold measurements, height, weight, age, and percent
body fat. The results were entirely consistent with the findings discussed so
for.

Race Effeot. Wilk's Lamda wia aignificant. The variables that oontributed
to the differences between rotes were again identified as the trioep, bioep,
"supraillao, and percent body fat.

Weiaht Group Effect. An expected, Wilk's Lamda was significant on all the
' dependent variables except for height.

fiReoos and Weliht.-Oroup-Intermotign,. The Interaction effect was not

significant.

7. Excursion 4: Disoriminant Analysis (All Data and a 50% Random Cut)

The results of disoriminant analysis, using all data, and classifying
individuals as belonging to either the normal weight or overweight group are
shown below in Table 8.

Z
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TABLE 8

DISCRIMINANT ANALYSIS

GROUPS a WEIGHTS (NORMAL, OVERWEIGHT)

VARIABLES a TRICEP, BICEP, SUPRAILIAC, RACE

DATA a ALL (N u 302)

ACTUAL PREDICTED MEMBERSHIP
GROUP N =NORA OVERWEIGHT

NORMAL 226 193 33
WEIGHT 85.4% 14.6%

OVERWEIGHT 76 17 59
22.%S 77.6%

1. CORRECT CLASSIFICATION • (193 + 59)/302 • 83.4%.
2. REFERENCE: AAKER, C max - Max 1P, Group 1, V2 Group 21

M Max .748, .252) • .748

3. SINCE .8341 > .7418, CLASSIFICATION IS ACCEPTABLE.

Aooording to a criteria by Aeker (referenoe 1), the olassificOtion Is
aooeptable. Note that the variable used were those determined to be significant
oontributors as determined from other analyses. The 50% random/ strat4fied out
soheme is shown in Table 9.

TABLE 9

DISCRININANT ANALYSIS

50% RANDOM CUT (STRATIFIED BY RACE, WEIGHT GROUP)

ORIG CUT
NORMAL WEIGHT • 226 113 (56 BLACK, 57 WHITE)

OVERWEIGHT * 76 38 (19 BLACK, 19 WHITE)

VARIABLES * TRICEP, BICEP, ILIAC, RACE

,.. ...... .....,.. 1....,.... .. . . . . .. .., . .. ,



The results of the d1soriminant analysis based on a single 505 random
out and classifying the remaining data not used to construct the disoriminant
functions are shown in Table 10. Note there is only a 3% difference in the
percentage of correct classifioation when compared to the results using all data
presented in Table 8.

TABLE 10

DISCRIMINANT ANALYSIS - CLASSIFICATION BASED
ON A 50% RANDOM CUT

PREDICTED MEMBERSHIP OF
ACTUAL REMAININO DATA
GROUP N NORMAL OVERWEIGHT

NORMAL 113 91 22
80.5% 19.5$

OVERWEIGHT 38 8 30
21.1% 78.9%

1. CORRECT CLASSIFICATION 91 + 30 .60
151

2. C max * .748 < .801

Brief Summary: This single case study indicates that multivariate procedures
(MANOVA, disoriminant analysis) yield consistent decisions for various combine-
tions of data. The decisions were consistent for several excursions within and
between groups. Although these results are not theoretically oonolusiave, and
represent only one set of data, they add confidence to drawing oonolusions from
data analysis that are driven to answer a series of "what if" questions.
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DESERT CAMOUFLAGE PAINT EVALUATION
FOR SAUDI ARABIAN NATIONAL GUARD

GEORGE ANITOLE AND RONALD L. JOHNSON

US Army belvoir Research and Development Center
Fort Belvoir, Virginia 22060-5606

ABSTRACT

This Paper descziibds tho proceduire for selecting candidate
desert paint colors, the field test, and statistical
analysis procedures which enabled the final color selection.
Eleven tactical vehicles were painted in camouflage 0'
colors and viewed by ten ground observers at four different
color backgrounds in Saudi Arabia. The method of testing
involved a ranking technique using a direct comparison
between two vehicles..ý This is more sensitive and discerning
than measurements on a scale of values and''overcomes the
problem of inconsistency of judgements expressed by the
same observer. The observers were presented with every
possible combination of paired vehicles and forced to
choose between them, 'The data was summarized for each
observer and test location and analyzed statistically to
determine preferred colors in the order of rank, establish
confidence limits, and establish color groupings for each
site.
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1.0 INTRODUCTION

In April 1980, the Project Manager (PM), Saudi
Arabian National Guard (SANG), Modernization, requested
assistance to provide camouflage for SANG. A fact finding
team visited Saudi Arabia in September 1980 to gather
specific information required to develop a camouflage
program including desert colored paints, nets, and uniforms.
This paper presents the paint development effort and
the selection of the final camouflage paint colors for
SANG.

The color used on SANG vehicles at the time of
the fact finding visit, resembled a battleship gray,
high luster paint. This color contrasted greatly with
the Saudi Arabian desert backgrounds, and the vehicles
could be seen from great distances. It was considered
an immediate requirement by PM, SANG to develop a desert
colored paint suitable for the Saudi Arabian deserts.
The following sections describe the procedure used in
selecting candidate paint colors, the field test, and
data analysis that enabled the final selection of the
col~or(s).

2.0 COLOR DETERMINATION

During the fact finding trip, soil samples and
35mm color slides were taken at each of 32 locales visited.
The color determination process was a subjective process
based on an evaluation of the soil samples and slides,
tempered by notes and mental recall of the terrain and
background by the fact finding team. Spectrophotometric
analysis of the soil samples was used to determine the
proper visual and near-infrared reflectance values.
Hundreds of color chips in selected color areas were
procured from commercial and government sources i/.
Thesi chips were matched against the soil samples and
the backgrounds as viewed in the slides. The evaluation
of soil sa5i,., e colors took into account that soil samples
represented the color slightly below the surface. This
color is in most cases, different from the color seen
"by an on-site observer, because the fine sand particles
"have been blown away by the desert winds, leaving the

, heavier particles behind. The surface layer, therefore,
"appears slightly different in color than a soil sample
which is drawn from below the surface. Based upon the
color determination process described, nine camouflage
colors were selected. A sample quantity of paint was
procured under paint specification TT-E-529 with a 15-18%
reflectance at 60W. This paint would provide sufficient
surface hardness, while still being acceptable (from
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the camouflage point of view) in teeins of gloss. The
test vehicles consisted of eleven V-150 armored vehicles.
Nine of the vehicles were painted monotone colors and
two were painted in a two-color pattern specially designed
for the V-150.

3.0 SITE SELECTION

At the request of SANG, all field testing was restricted
to areas around Riyadh and Hofuf. A survey of the local
terrain around Riyadh and Hofuf showed that there were
four general terrain colors: tan, gray, buff, and tan-red.
Two elevated viewing stations for the observers were
selected for each of the four sites of interest. All
target vehicles (V-150's) were viewed against the background
of the terrain and not against the sky. Table 1 shows
the four sites with the viewing ranges and site .olor.

TABLE 1

Site Description

SITE NEAR RANGE )FAR ýRANGE

Tan 720 Meters 1,020 Mete..
Gray 587 Meters 853 Meters
Buff 778 Meters 1,050 Meters
Tan-Red 738 Meters 911 Meters

The near range was selected to allow observers close
study of the colors. The far range was selected to
represent a quasi-realistic combat distance.

4.0 TEST METHOD

The method of testing involved a ranking technique•V3
using direct comparisons between two vehicles. This
technique is more sensitive and discerning than actual
measurement on a scale of values and helps overcome
the problem of multidimensional judgements, i.e., inconsist-
ency of judgements expressed by the same obsorver. ,41
In this paired method of ranking, an observer is presented
with every possible combination of two vehicles from
the set to be evaluated. The observer is forced to
choose between the two vehicles, and must decide either
way, even if he thinks the other is just as good. The
data was recorded by each observer and was summarized
for each test location. It was analyzed statistically
to determine preferred colors in the order of rank,
established confidence limits, and color groupings for
each site. All observations were a minute in duration,
and were performed between the hours of 1000 and 1400
for proper sun angle and minimum shadows. Each day
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was clear and hot with temperatures between 120 and
130 degrees Fahrenheit. Table 2 summarizes the number
of observers for each site and range. All observers
were screened for 20/20 visual acuity and normal color
vision before selection.

TABLE 2

Number of Observers for Each Site and Range

SITE RANGE
NEAR FAR

Tan 10 11
Gray 11 11
Buff 10 10
Tan-Red 10 10

15.0 RESULTS

The mean preference and 95% confidence interval
was calculated for each V-150 color. These results
are presented as descriptive data for each viewing range..
Zor each test sito.

TABLE 3

Descriptive Data, Tan Terrain, Range 1,020 Meters

Vehicle Mean 95% Confidence Interval2/"
Color Number Preference Lower Limit Upper Ljmit

1 2.90 1.86 3.94
2 3.70 2.66 4.73
3 5.00 3.96 6.04
4 2.10 1.06 3.14
S5 3.10 2.06 4.14
6 8.30 7.26 9.34
7 2.30 1.26 3.34

7/6 7.70 6.66 8.74
7/10 4.10 3.06 5.14
10 7.40 6.36 8.44

SAUDI SAND 8.40 7.36 9.44

The higher the mean preference number, the greater the
number of times the color was preferred by the observers.
That iot, Color Saudi Sand was selected as being the
most preferred color with a mean preference of 8.40.
"The associated confidence interval states that there
is 95% confidence that the true mean preference rests
between 7.36 and 9.44. The remaining Tables 4 through
10 can be interpreted in the same manner as Table 3.
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TABLE 4

Descriptive Data, Tan Terrain, Range 720 Meters

Vehicle Mean 95% Confidence Interval
Color Number Preference Lower L-i-miLt UP5per--mit

1 1.45 0.47 2.44
2 4.55 3.56 5.53
3 4.64 3.65 5.63 i44 4.00 3.01 4.99
5 3.64 2.65 4.63
6 8.91 7.92 9.90
7 1.91 0.92 2.90

7/6 7.36 6.37 8.35
7/10 3.75 2.74 4.72
10 6.55 5.56 7.53

SAUDI SAND 8.27 7.28 9.26

TABLE 5

Descriptive Data, Gray Terrain, Range 853 Meters

Vehicle Mean 95% Con~fidence Inherval *
Color Number Preference Lower-Limit U]2oer =Lmit

1 7.91 7.07 8.75
2 6.64 5.79 7.47
3 2.36 1.52 3.21 444

4 7.27 6.43 8.12
5 3.55 2.70 4.39 1.
6 1.36 0.52 2.21
7 7.82 6.97 8.66

7/6 5.36 4.52 6.21
7/10 6.91 6.07 7.75
10 4.91 4.07 5.75 .

SAUDI SAND 0.91 0.07 1.75
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TABLE 6

Descriptive Data# Gray Terrain, Range 587 meters

Vehicle Mean 95% Confidence Interval
Color Number Preference Lower LiMt ~p~er LMit

1 9.18 8,34 10.03 4

2 8.00 7.16 8.84
3 2.45 1.61 3.29
4 7.45 6.61 8.29
5 5.18 4.33 6.03
6 1.91 1.07 2.75
7 5.91 5.07 6.75

7/6 3.73 2.86 4.57
7/10 5.91 5.07 6.75
10 4.55 3.70 5.39

SAUDI SAND 0.73 0.00 1.57

TABLE 7

Descriptive Data, Buff Terrain, Range 1,050 Mete~rs

Vehicle Mean 95% Confidence Interval
Color Number Preference Lower Limit UD2er Li4mit

1 2.60 21.67 3.53
2 1.60 0.67 2.53
3 4.60 3.67 5.53
4 3.40 2.47 4.3311
5 1.60 0.67 2.53 e
6 7.70 6.77 8.63

7 4.00 3.07 4.93 .

7/6 8.80 7.87 9.73L
7/10 6.50 5.57 4.43
10 7.60 6.67 8.53

SAUDI SAND 6.60 5.67 7.53
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TABLE 8

Descriptive Data, Buff Terrain, Range 778 Meters

Vehicle Mean 95% Confidence Interval
Color Number Preference Lower Limit Upper Limit

1 1.80 0.87 2.73
2 1.10 0.17 2.03
3 4.00 3.07 4.93
4 3.40 2.47 4.33
5 3.10 2.17 4.03
6 8.50 7.57 9.43
7 '3.90 2.97 4.83

7/6 7.30 6.37 8.23
7/10 6.70 5.77 7.63 '4
10 7.20 6.27 8.13

SAUDI SAND 8.00 7.07 8.93

TABLE 9 ",

Descriptive Data, Tan-Red Terrain, Range 911 Meters

Vehicle Mean 95% Confidence Interval
Color Number Preference Lowier Lmt Upper Limit

1 0.70 0.00 1.48
2 2.90 2.12 3.68
3 5.30 4.52 6.08
4 4.80 4.02 5.58
5 2.50 1.72 3.28
6 8.60 7.82 9.38
7 1.50 0.72 2.28

7/6 8.20 7.42 8.98
7/10 4.60 3.82 5.38
10 7.00 6.22 7.38

SAUDI SAND 8.90 8.12 9.68
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TABLE 10

Descriptive Data, Tan-Red Terrain, Range 738 Meters

Vehicle Mean 95% Confideoce Interval
Color Number Preference Lower LiRE Upper Limit

1 1.90 1.12 2668
2 1.40 0.62 2.18
3 5.90 5.12 6.68
4 4.00 3.22 4.78
5 4.60 3.82 5.38
6 8.40 7.62 9.18
7 1.60 0.82 2.38

7/6 7.30 6.52 8.08
7/10 3.40 2.62 4.18
10 7.40 6.62 8.18

SAUDI SAND 9.10 8.32 9.88

An analysis of variance was performed upon the data
Sto determine the effect upon the two ranges as to color

preference.. These results are shown in Tablet)ll-14.

TABLE 11

Analysis of Variance to Determine the Effect of Range
and Vehicle Color Upon Color Preference - Tan Terrain

Degrees of Sum of Mean V
Source Freedom Squares Squares F-Ratio 4.

Range 1 0.O00** 0.000'**.00

Vehicle Color 10 1,240.914 124.091 44.81*
Number,

Interaction 10 4.178 0.418 0.15 K
Error 209 578.800 2.769

* Significant at a - 0.01 ** Less than 0.001

Conclusion: The data indicated highly significant differences
"in vehicle color preferences, and that these preferences

". are not affected by range distances. The significant
interaction is only the result of the variable vehicle
color.
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TABLE 12 i~*

Analysis of Variance to Determine the Effect of Range 0

and V~hicle Color Upon Color Preference - Gray Terrain

Degrees of Sum of Mean
Source Freedom Squares Squares F-Ratio

Range 1 0.000* 0.000'*1.00

Vehicle Color 10 1,434.161 143.418 71.24*
Number

Interaction 10 76.909 7.691 3.82*

Error 220 442.909 2.013

* Significant at a - 0.01 * Less than 0.001

Conclusion: The data indicated highly significant differences
in vehicle color preferences, and that these preferences
are not affected by range distances. The 'significant
inte:ction is only the result of the variable vehicle a
color.

m ~TABLE 13

Analysis of Variance to Determine the Effect of Range
and Vehicle Color Upon Color Preference - Buff Terrain

Degrees of Sum of Mean
Source Freedom Sguares Squares ?-Ratio

Range 1 0.000*** 0.00***I. 00

Vehicle Color 10 12,297.200 129.720 58.64** f' I

Number

Interaction 10 42.600 4.280 1.92*

Error 198 438.00 2.212

* Significant at a 0.05 *** Less than 0.001

** Significant at a - 0.013

Conclusion: The data indicates highly significant differences
in vehicle color preferences, and that these preferences
are not affected by range distances. The significant
interaction is only the result of the variable vehicle
color.

S.4
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TABLE 14

Analysis of Variance to Determine the Effect of Range
and Vehicle Color Upon Color Preference - Tan-Red Terrain

Degrees of Sum of Mean
Source Freedom Squares Squares F-Ratio

Range 1 0.000"* 0.00* 1.00

Vehicle Color 10 1,563.800 156.380 99.82*
Number

Interaction 10 58.000 5.800 3.70*

Error 198 310.200 .1.567

* Significant at a * 0.01 ** Less than 0.001

Conclusion: The data indicates highly significant differences •
in vehicle color preferences, and that these preferences
are not affected by range distances. The significant
interaction is only the result of the variable vehicle
color.

The 'above Tables 11-14 have indicated that the
significant differences found in this study are due
solely to the variable color. For this reason, the
data was collapsed for the range variable. This new
data will then have the effect of doubling the sample
size within each cell to enable more positive conclusions.

4 Tables 15-18 present this data for each of the tour
test sites.

TABLE 15

Descriptive Data, Collapsed Across Ranges, Tan Terrain

Vehicle Mean 95% Confidence Interval
Color Number Preference Lower Limit Upper Limit

1 2.14 1.42 2.86
2 4.14 3.43 4.86
3 4.81 4.09 5.53
4 3.10 2.38 3.91
5 3.38 2.66 4.10
6 8.62 7.90 9.34
7 2.10 1.38 2.81

7/6 7.52 6.81 8.24
7/10 3. 90 3.19 4.62
10 6.95 6.24 7.67

SAUDI SAND 8.33 7.62 9.05
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The higher the mean preference number the greater the
number of times the color was preferred by the observers.
That isr vehicle 6 was selected by the observers as
being the most preferred vehicle with a mean preference
of 8.62. The associated confidence interval states
that there is 95% confidence that the true mean preference
rests between 7.90 and 9.34. The remaining Tables 16-18
can be interpreted in the same manner as Table 15.

TABLE 16

Descriptive Data, Collapsed Across Ranges, Gray Terrain

Vehicle Mean 95% Confidence Interval
Color Number Preference Lower Limit Upper Limit

1 8.55 7.95 9.14 4

2 7.32 6.72 7.91
3 2.41 1.81 3.01
47 .36 6.77 7.96
5 4.36 3.77 4.96
6 1.64 1.04 2.23
7 6.86 6.28 7.46

7/6 4.55 3.95 5.14
7/10 6.41 5.81 7.00
10 4.73 4.13 5.32

SAUDI SAND 0.82 0.22 1.41

TABLE 17

Descriptive Data, Collapsed Across Ranges, Buff Terrain

Vohicle Mean 95% Confidence Interval
Color Number Preference Lower Limit Upper Limit

1 2.20 1.54 2.86
2 1.35 0.69 2.01
3 4.30 3.64 4.69
4 2.40 2.74 4.06
5 2.35 1.69 3.01
6 8.10 7.44 8.76
7 3.95 3.29 4.61

7/6 &.05 7.39 8,71
7/10 6.60 5.94 7.26
10 7.40 6.74 8.06

SAUDI SAND 7.30 6.64 7.96
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TABLE 18

Descriptive Data, Collapsed Across Ranges, Tan-Red Terrain

Vehicle Mean 95% Confidence Level
Color Number Preference Lower Limit Upper Limit

1 0.70 0.11 1.29
2 2.90 1.92 3.88
3 5.30 4.23 6.37
4 4.80 4.06 5.54
5 2.50 1.53 3.47
6 8.60 7.47 9.73
7 1.50 0.99 2.01

7/6 8.20 7.26 9.14
7/10 4.60 3.33 5.87
10 7.00 6.66 7.34

"SAUDI SAND 8.90 8.19 9.61

The confidence intervals for the collapsed data are displayed
graphically in order to obtain a better idea of the
groupings of color preference for each of the four terrains.
These graphs are shown in Figures 1-4.
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A view of the graphs indicated the following vehicle
colors were preferred for the listed sites:

o Tan Terrain - 6, 7/6, 10 and Saudi Sand

0 Gray Terrain - l, 2, 4, 7, and 7/10

o Buff Terrain - 6, 7/6, 7/10, 10 and Saudi Sand * M

o Tan-Red Terrain - 6, 7/6, 10 and Saudi Sand

Paired comparisons were performed for the most preferred
vehicle colors for each of the sites to determine signifi-
cant differences. The results are shown in Tables 19-22.
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"TABLE 19
Paired Comparisons of the Most Preferred Vehicle

Colors on the Collapsed Data - Tan Terrain

Vehicle
Color Numbers F-Ratio Significance Levels

6 and 7/6 4.548 a - 0.03412

6 arid 10 10.532 a - 0.00137

6 and Saudi Sand 0.310 a - 0.57858
7/6 and 10 1.238 a - 0.26713
8 and Saudi Sand 2.485 a - 0.11647

10 and Saudi Sand 7.230 a - 0.00775

Conclusion: Vehicle color 6 differs significantly from
vehicle colors 7/6 and 10, and vehicle color 10 differs
significantly from vehicle color Saudi Sand.

TABLE 20

-I Paired Comparisons of the Most Preferred Vehicle
Colors on the Collapsed Data - Gray Terrain

VehicleColor Numbers F-Ratio Significance Levels

1 and 2 8.230 a 0.00452
1 and 4 7.631 a 0.00622

1 and 7 15.455 a - 0.00011

1 and 7/10 24.937 a - 0.00000

2 and 4 0.011 a 0 1.00000
2 and 7 1.129 a - 0.28918

2 and 7/10 4.516 a = 0.03470

4 and 7 1.366 a - 0.24377

4 and 7/10 4.978 a - 0.02667
7 and 7/10 1.129 a - 0.28918

Conclusion: Vehicle color 1 differs significantly from
vehicle colors 2, 4, 7, and 7/101 vehicle color 2 differs
significantly from vehicle color 7/10; and vehicle color
4 differs significantly from vehicle color 7/10.
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TABLE 21
,** .... i

Paired Comparisons of the Most Preferred Vehicle
Colors on the Collapsed Data - Buff Terrain

Vehicle
Color Numbers F-Ratio Significance Levels

6 and 7/6 0.011 a - 1.00000

6 and 7/10 9.734 a - 0.00207

6 and 10, 2.120 a 0.14691

6 and Saudi Sand 2.769 a 0.09763

7/6 and 7/10 9.096 a 0.00288
7/6 and 10 1.828 a 0.17786

7/6 and Saudi Sand 2.433 a 0.12029

7/10 and 10 2.769 a 0.09763
7/10 and Saudi Sand 2.120 a 0.14691

10 and Saudi Sand 0.043 a 1.00000

Conclusions Vehicle color 6 differs significantly from
vehicle coonr 7/10# and vehicle color 7/6 differs signifi-
cantly from vehicle color 7/10.

TABLE 22

Paired Comparisons of the Most Preferred Vehicle
Colors on the Collapsed Data Tan-Red Terrain

Vehicle
Color Numbers F-Ratio Significance Levels

I.

6 and 7/6 3.590 a 0.05957
6 and 10 10.787 a 0.00121

6 and Saudi Sand 1.596 a 0.20799

7/6 and 10 1.931 a 0.16623

7/6 and Saudi Sand 9.973 a 0.00184

10 and Saudi Sand 20.681 a 0.0001

Conclusion: Vehicle color 6 differs significantly from ..
vehicle color 10; vehicle color 7/6 differs significantly
from vehicle color Saudi Sandl and vehicle color 10
differs significantly from vehicle color Saudi Sand.

The analysis of the data indicated that the color
preferences fell into two distinct groupinqs. The colors
6, 7/6, 10, and Saudi Sand were most preferred for the

1.8
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tan, buff, and tan-red terrains (Figures 1, 3, and 4).
The colors 1, 2, 4, 7, and 9 were the most preferred
for the gray colored terrain (Figure 2). A review of
Tables 19, 21, and 22 show that a ranking of the best
colors for the tan, buff, and tan-red terrains would
bet

o Colors 6 and Saudi Sand - Best

o Colors 7/6 and 10 - Next Best

A review of Table 20 for the gray color terrain shows
that the ranking of the preferred colors would be as
followss

o, Color 1 - Best

"o Colors 2 and 4 - Average

" Colors 7 and 7/10 - Worst

6.0 DISCUSSION

Observations by the test team made during this
trip and during the fact finding trip in September 1980,
indicated a predominance of the tan, buff, and tan-red
backgrounds around the Riyadh and Hofuf vicinities.
The gray test area was the exception. Although the
Belvoir Research and Development Center field test personnel
did not have the opportunity to determine the physical
extent of the gray colored terrain, this color was not
prevalent at Hofuf or anywhere else in the Riyadh area.

The overall color selections should be based on
what is considered to be the predominant terrain background
colors. The data analysis indicated that the best color
selection for the predominant terrain backgroun4 (i.e ,
tan, buff, tan-red) are the colors 6 and Saudi 1,d. : ,

The data analysis further indicated that there is no
significant statistical difference between these colors.
Color 6 tends to blend in slightly better with the tan
and buff backgrounds, whereas color Saudi Sand is slightly
ahead in the tan-red background. A forced selection X
between the two colors would probably favor color 6
based upon the test results in the tan and buff sites,
and the overall preponderance of tan and buff backgrounds
in the Riyadh and Hofuf areas.

If for some reason the gray colored background
cannot be discounted, then a color should be selected
which is a compromise for all sites. Table 19 indicates
that colors 5, 7/6, and 10 are in the second grouping
of best colors. Colors 7/6 and 10 are also in the next Not
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best grouping of colors for the tan, buff, and tan-red
sites-as indioated in the previous section. Data analysis
also indicates'that color 7/6 does not differ-significantly
from color 10. Colors:7/6 and 10 could therefore serve
as overail coMpromise colors across all site.. Although
color 7/6 has a slight edgepin preference across all
sites,*the'preferred color' ts -color. 10. This is based
upon the camouflatre 'uideline of selecting the. lighter
c or wheOonfiont•d."Wi'th a choice for a desert background.
Sh. •4ghter coioo iends to counteract some of the natural
on-veihicl~e sfiapws which,;contribute* to giving the vehicle

7.0 , SUMMA Y,

,A total"of ..eleven V-l150 vehicles painted in camouflage
colots were viewed by a minimum of ten ground observers
at tan, buff, gray, dnd tan-red colored backgrounds
in Saudi Arabia. Each site had a near and far range.
Every possible color pair combination was viewed at
each site and range. In each case, the observer was
forced to make a choice as to which color blended best
with the background.

Analysis of the data indicated two preferred colors
for the predominant background terrains found in the
Riyadh and Hofuf areas, namely color 6 and color Saudi
Sand. The data analysis also indicated that there is
no significant statistical difference between these
colors. A subjective forced choice between these colors
favors the selection of color 6.

-.•;
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AREAL PERSISTENCE OF CLOUD CEILINGS
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Redstone Arsenal-, Alabama 35898-5248

ia,

ABSTRACT: The correlation coefficient of attributes (tetrachoric correlation
for 22 contingency table) In a useful tool in the study of areal persistence.
This correlation permits us to evaluate persistence for subgroups (classes of
attributes) while the ordinary linear correlation coefficient is a summary
of the total data set. From the examination of the tetrachoric correlation
it is learned that little persistence is found for low visibility and low
cloud ceiling conditions In a selected mesoscale area. Clouds with a ceiling
over 8000 ft, however, disrlay an apparent wider coverage of this area and
show persistence. Thus the vertical structure of persistence is confirmed
in quantitative numbers by the tetrachoric correlation coefficient.

1. INTRODUCTION: The tetrachoric correlation coefficient of a 2X2 contingency
tableisnot used very often in statistical analysis because many statisticians
have pointed out its limitations, especially the problem of determining
its statistical significance. In turn, the ordinary linear correlation
coefficient may be of limited value If applied to non-Gaussian distributions
such as cloud amounts (sky cover) and ceiling. Furthermore, areal persistence
as judged by the ordinary linear correlation coefficient is not suitable to
disclose vertical stratification of areal persistence. In this particular
case the tetrachoric correlation is not only a useful tool to measure areal
persistence in the mesoscale, but can reveal the vertical structure of areal
persistence. We learn from cloud data of a mesoscale area in Central Europe
that fog and low ceilings follow a joint probability which is virtually
equivalent to randomness. However, ceilings above 4000 feet exhibit non-
random behavior, and cloud ceilings extend over a much larger area with
consistency. This interpretation is obtained in quantitative form from the
use of the tetrachoric correlation coefficient.

-. 7

.18

183 ,,

::•...•.T.: .•....•...•:'?. ` :... .:• .• .. :.:...1...•...•.''':,;'''.. .:.':,'''.L.'' ',S,''",.,'.. '* .,... .. .4*,.., .,*...'b..-',-. .



2. THEORETICAL BACKGROUND. Let the four fields of a 2X2 contingency table
be calle a. (FcTT-g 1). Then the marginal distribution can be written:

a b R1

c d R2  Rl 0a +b (la)

Si~R w2 To R c+d (1b)K

Fig 1 Contingency Table S1  a c()
S2 -b +d (1d)

Let us assume that the field attributes are given as fractions of the total N,
namely:a b c du 10()

and
RI+ R2  S1 + S2 *1.0 (2b)

The tetrachoric correlation coefficient as defined by Kendall and Stuart (1958)
is:

dj (h (k) (3a)

where Tr (x) is the tetrachoric function:

¶rr(x) mHr-l .(x) * (x)/(r 1 )1' (3b)

and O(x) Is the Gaussian integral value integrated from -Ooto x.

Hr (x) represents the Tchebycheff - Hermite polynomials, and h -SO, R2.

It is evident thatp cannot readily be calculated and is usually determined by
iterations and/or the aid of tables. Approximations have been suggested such
as: .6

The form which is used here i~s based on the X2 calculatiun and is sometimes called
the phi-coefficient. The (linear) correlation coefficient of attributes in a
contingency table is:

r& * (X2 /N)/(m-1))05
and for a 2X2 contingency table with m *2, we find:
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x2/N= (ad -bc)2 / (R1 R2 S1 S2) (6a)

although Yates has suggested a corrected form (adjusted to eqn 2a, b):
2 /N - (lad -bcl - 1/2N) 2  (6b)

which must be used for tmall N. In our case N0200 and the correction can be
neglected. Hence:

ri - (ad - bc) 2 / (R1 I92 Sl SO (7)

which can be transformed into:

ri r • (a - RISI) 2  (RI R2 SIS 2 ) (8)

This has also been called the tetrachoric correlation by various authors.

The reader will notice that rt a 0 for a - SI R1 and rt - 1.0 for Sl - R1 a.
The first case a ; S1 R1 represents the Joint probabil ty of two events
occurring at random. The second case implies a perfect match of the two
events, or complete association. The size of rt for a 2X2 contingency table of
the joint probability of cloud cover expresses the degree of persistence.
Caution must be exercised, however.

Similar to p or rT the establishment of the statistigal significance for rt
is not simple. this is supported by the fact that for S2 0 R1 the correlition

has a maximum value rmax <1.0 (see Table 1). Thus the interpretation
0 persistence from the use of rt is not trivial. In order to evaluate the
effect of the asymmetry R1 0 S1 we may define a ratio: . r

nt " rtlrmax (9a)

Assume R1 1 S1, the field a RR1 , then amax - R1 ; for R1 1 S1 we have amax S s1.

r 2 max - R1 S2/R2 S1  (9b)

or n2 - (a - R1 S1 )2 /[RJ (1 - S1)2] (9c)

For an observed aobs we finalize:

nt 0 (aobs - R1 S1 )/R1 S2; aobs R1 (9d)

Table 1 displays the maximum rt for RI and SI. Since the values of rt are
symmetric around the diagonal only one part is provided. Evidently the lower
the ratio R1 /S2 the lower is rmax. However, rmax Is not linearly related to
R1/S 1 (see eqn. 9b).

The ratio nt provides an evaluation whether r has rendered its maximum h
value, and can be considered an adjusted measure ofpersistence.

1'8
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The utilization uf rt has some advantages compared with the application
of the ordinary linear correlation coefficient. The calculation of rt is based
on a contingency Lible. Thus the correlation (and implicitly the persistence)
can be determined 'or specific groups of cloud conditions by establishing
the contingency taoles for these groups and comparing rt for them. In our case
these groups are arranged by classes of the cumulative requency of occurrence
of cloud ceiling by altitude, although the contingency tables needed for
comparison can be established for any grouping of attributes. The grouping
of cloud cover by ceiling height permits us to study the variation of the
persistence as a function of ceiling altitude, information which would not
readily be available from the ordinary linIear correlation coefficient which
is calculated for the entire data set. •.-

For the referenced data sample the correlation coefficient can be considered
as significantly different from zero at the 95% level of significance for r1O.O55
(one-sided) or rg 0.067 (two-sided). The respective significance for the three
sigma level would be YO•10. and 0.11, respectively. These values will be
referred to in the subsequent text.

3. GROUPS OF CLOUDS. As previously outlined the question is whether persistence
is the same irrespective of ceiling height and conditions designated as
"adverse weather". Ceiling in this connection is defined as cloud cover of
-0.5 of the sky. The following cases were of interest.

o visibility - 1 km (fog)

O ceiling -500 ft

O ceiling - 500 ft and/or visibility - 2 mi

O ceiling • 800 ft

o ceiling - 800 ft and/or visibility - 3 mi

o .eiling - 2000 ft and/or visibility - 4 mi
m'S

o ceiling - 4500 ft and/or visibility - 4 mi

0 ceiling = 8000 ft and/or visibility w< 5 mi

The frequency of occurrence and the joint (empirical) probabilities have been
"compiled in reports by Essenwanger and Levitt (1984) and Levitt and.
r.ssenwanger (1984). Table 2 is an example of these Joint probabilities. The
"Joint (empirical) probability of "adverse weather" is rp.:unable as displayed
in Table 2 for the selected groups. The question remains whether this is the
lowest possible joint probability. It would be if random association can be
assumed but it would not be if the area persistence of adverse weather is high 16

between the two stations. This will be investiqated now.

4. TWO STATION AREAL PERSISTENCE. As a first example the condition for fog

(visibility 1 1 km) is examined. Table 3a exhibits the occurrence of fog at
four stations (central Europe) in fall. Table 3b lists the Joint probabilities
for the six possible combinations or pairs arranged by distance. This table

.+ exhibits a decrease of the joint occurrence with distance and a slight increase
of the probabilities in the last two columns.
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How much is this increase caused by a higher persistence? This question
can be answered from Table 3c which discloses rt for the six station pairs.

The first apparent difference between Tables 3b and f, is the fact that the
Joint probability displayA a different diurnal trend. While the highest joint
probability is found at 7n in the morning the highest persistence is found
between 19n to 01n except for the last two columns where highest persistence and
peak of joint probability coincide. These variations as depicted are caused
by the differences of terrain conditions within the mesoscale area. 'These
differences are again evident in the comparison of the station pairs as function
of the distance.

It can be noticed that the correlation (and persistence) shows a tendency
to decrease with distance although the last tWo columns disclose again a slight
increase in rt in comparison with the middle range of 70 miles. This small
increase may be a terrain effect. Apparentiy fog conditions in the Rhine Valley
show a small tendency to occur also in the Saar Valley while Hahn which is
located in a ivountain.area does not correlate as well with Frankfurt and
Heidelberg. The small value of rt indicates very little persistence. It may
surprise that even Heidelberg and Frankfurt, both in the Rhine Valley, display
only a moderate perpistence, i.e. a maximum association of 38% (from rt a 0.62),
and this only at 22h (local time).

Table 4 is selected to show the variation of persistence with altitude and
distance. Only two levels of ceiling are shown, under 800 and 8000 ft. A
comparison of rt for the top and the lower part of Table 4 reveals that for
all but one column the correlations are generally higher if the ceiling height
is higher. This result is not changed by the ratio nr(eqn. 9d).

Again, a marked decrease is evident with distance implying that persistence

decreases with distance. Although this result is expected it is a quantitative
formulation exhibited in Table 4. The high correlation for ceiling 9800 ft
for the station pair Heidelberg - Frankfurt contrasting the lower value for
ceiling under 8000,ft (column three) may be somewhat unexpected. It has some
explanation In the terrain conditions within the mesoscale area, however.
It was pointed out in the discussion of Table 3c that Heidelberg and
Frankfurt, both in the Rhine Valley, show a high correlation (and persistence)
for fog. This high persistence is extended to include the conditions ceiling
1800 ft. However, if ceiling!8000 ft is considered both stations show a

more independent pattern. This conclusion could not be deduced from inspection
of Table 2 where the joint probabilities are of the same magnitude and little
distance dependency is shown.

5. THREE STATION AREAL PERSISTENCE. Examples of three station areal correlations
are presented in Tables 5 and 6. In the case of three stations we have the
option of utilizing a 2X2 or 3X3 contingency table. For the 2X2 contingency
table we start with the joint probability for one station pair as R1 or SI
(see eqn.'s 1) and'W'denotes the joint probability of the three stations. This
scheme is similar to the algorithm which was discussed before. An example is
given in Table 5.
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We learn from Table 5 that the correlation increases with increasing ..,
ceiling altitude. This implies that cloud layers In higher altitudes show
a larger areal persistence or area coverage. This fact can be confirmed
from inspection of daily weather maps and study of their frontal systems.
This persistence depends, however, on the size of the mesocale area. In
Table 5 the diurnal variation was eliminated by averaging although from a point
of theoretical statistic Fisher's z-function should have been used. The
calculation did not alter the exhibited relative magnitude within Table 5 and
is therefore omitted.

It is noted that the condition of ceiling-<2000 ft without inclusion of
visibility displays a slightly smaller correlation than with inclusion of the
visibility except for the last column. This increase of the persistence is
reasonable because good visibility appears to prevail over a larger area than poor
visibility. The latter is a predominant effect of local terrain which is
quantitatively confirmed by the correlation.

Table 6 exhibits an additional feature. While part A of the table
provides the tetrachoric correlation part B shows the correlation based on
eqn. 5 and the 3X3 contingency table. In the latter case the total area coverage
is judged. Part A permits us to study the persistence in segments of the
mesoscale area. The three station correlation in part B is only one single
measure for the total area cover. Both measures reflect the increase in areal
persistence from lower to higher ceiling threshold. Furthermore, Table 6A
also discloses some seasonal variations. For low ceiling (under 800 ft)
little areal persistence exists in summer while the winter season shows
relatively strong persistence. Again, this is expected. During the summer
months low ceiling is limited to small areas associated with terrain conditions.
In Central Europe fog and low ceiling prevail often over even larger areas
in wintertime than the mesoscale area under study here. The tendency of lower
persistence In summer for low ceiling is also confirmed in Table 6B.

5. FOUR STATION AREAL PERSISTENCE. Again, several choices are available how
to produce a 2X2 contingency table for four stations and examine the areal
persistence. The first example Is given in Table 7. The joint probability of
adverse weather is compared with R1 and S1 being the joint probability of two
stations. This permits us a study of areal persistence in the zonal and
meridional direction. The correlation and ratio of correlation to the maximum
possible correlation is exhibited in Table 7 for four seasons.

We learn that again low visibility and ceiling show little areal persistence
in the zonal direction while in the meridional direction areal persistence is
low in spring. Areal persistence improves with higher altitude of the ceiling.
Apparently the persistence is about equal in the zonal and meridional direction
for higher ceiling. The numerical values increase for the ratio rt but the
general trend of the areal persistence remains the same. The higher areal
persistence in the meridional than the zonal direction for low visibility and
ceiling altitude may be a consequence of frontal systems predominantly moving
in the meridional direction in this particular mesoscale area.

Iq *U,

r. #t.
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Table 8 provides a summary of the diurnal trend for selected groups of
adverse weather in fall. This time the correlation is calculated from R1
being the Joint probability of three stations and S1 the probability of the
fourth station. Four conditions (one for each station as S1) can be construed.
The correlations for these four conditions have been arranged for specified
hours. It is evident that a definite diurnal trend exists. The minimum
persistence is underlined in Table 8. The diurnal difference of the correlation
appears to be reduced with increasing ceiling altitude but the minimum persistence
does not display a uniform pattern.

7. CONCLUSION. It has been illustrated that the correlation coefficient of
attributes for a contingency table (for a 2X2 contingency table also called
tetrachoric correlation) can be useful in the study of areal persistence of
cloud and visibility conditions. Since the fields of the contingency table
can reflect the probability of occurrence for specified classes it is possibleto study the vertical structure of the areal persistence while the ordinary ••!linear correlation coefficient can only express the persistence for the total

set of data.

It has been shown that persistence for a mesoscale area depends on cetiling
altitude. It was deduced that low visibility ( 91 km) and low ceiling ( 1000 ft) ,:W.
is predominately terrain dependent with only a small areal persistence. However,
clouds with ceilingm@8000 ft tend to cover more than the mesoscale area under
investigation. Thus they depict areal persistence. As Table 7 exhibits there is
little seasonal fluctuation for ceiling 8000 ft.

The data on cloud cover over a mesoscale area in Central Europe produce
asymmetric 2X2 contingency tables. In this case the maximum possible correlation
Is smaller than unity. A correction can be made to evaluate this bias by
calculating a ratio nt of the correlation coefficient to the maximum correlation.
As it proved the result concerning the areal persistence does not change
significantly by examination of this ratio.
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TABLE I M4AXIMUMN TETRACIORIC CORRELATION

S1  0.01 0.05 10.10 0.20 10.30 0.40 V50 RI6 .01.01,0 .6 .9099X

0.01 1.0

0.05 0,438 1.0

0.10 0.302 0.688 1.0

0.20 0.201 0.459 0.667 1.0

0.30 0.153 0.350 0.510 0.764 1.0 V'.f.~

0.40 00123 0.281 0.408 0.612 0.801 1.0

0.50 0.100 0.229 0.333 0.500 0.655 0.816 1.0

0.60 0.080 0.187 0.272 0.408 0.535 0.667 0.816 1.0

0.70 0.065 0.150 0.218 0.327 0.429 0.535 0.655 0.802 1.0

0.80 0.050 0.114 0.157 0.250 0.329 0.408 0.500 0.612 0.764 1.0

0.90 0.034 0.076 0.111 0.167 0.218 0.272 0.333 0.408 0.509 0.667 1.0 1 i

0.95 0.023 0.053 0.077 0.115 0.150 0.187 0..229 0.281 0.350 0.450 0,6881.0

0.99 0.010 0.023 0.034 0.050 0.066 0.082 0.101 0.123 0.154 0.201 0.302 0.438 1.0

0.99910.003 0,007 0.011 0.016 0.021 0.026 0.032 0.039 0.048 0,063 0,095 0.138 0.3151 1.0
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TABLE 3A VISIBILITY € 1 KM (PROBAII.ITIES) ,

F ALL

1 5.31 4.41 8.22 10.71
'4 6,2 7.0 32.0* 13.8
7 9.2 10.0 16.9 19.3

10 5,9 6.9 2.4.. 13.7
13 2.6 3.1 4.3: 6.6 •-"'

16 2,6 2.4 2.2 5,6
19 2.9 2.3 3,8 6.5
22 4.2 3.2 4,1 8.1

HI[ I DbilDRO • '--

PRANKFUNT
1AARKRUICKIN
HAHM

TAILK 31 JOINT PROBABILITIES OF VSIIBILITY,1AN FOR STATIONS OF TABLE 3A

FALL

miles 4o(N.5) 5O5N-S) 70(E-W) 70(1-1) gO([-W) HO(S-,NE)
Hour SA-HA H141R A Il-NA FR-WA HII.SA S.FE .

1 3.7 1.9 1.9 1.4 1.3 22 .:

4 1.5 3.3 2.2 1.1 2.6 3.1 '

7 ).7 4.1 3.8 3.1 I1.6 .6

10 4.6 I.s 2.1 2.0 1.5 3.3

13 1.3 1.0 0.6 0.4 0.6 0..

1 1.2 1.1 0.3 0.6 0,3 0.4

11. C14 1.5 0.7 0.6 0,4 0.7

It 2.4 3.3 0.3 0. 061 1.0

i%,

SA v Searbruccken O

HA v Hahn

HEI • Heidelberg

FR m Frankfurt
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TABLE 4 TWO-STATION CORRELATIONS (FALL)

C S 800 FT

Tetraphoric Correlation

MILES: 40 50 70 70 80 90

HOUR SA-HA HEI-FR HEI-HA FR-HA HEI-SA SA-FR

1 .44 .58 .17 .22 .21 .30
7 .37 .46 .09 .21 .15 .19

13 .39 .37 .11 .25 .19 .28
19 .47 .46 .20 .35 .19 .24

RATIO

1 .53 .58 .32 .41 .34 .48
7 .46 .53 .18 .42 .25 .27

13 .44 .48 .24 .53 .37 .41
19 .56 .55 .39 .70 .32 .33

C £8000 FT

Tetrachoric Correlation

MILES: 40 50 70 70 80 90

HOUR SA-HA HEI-FR HEI-HA FR-HA HEI-SA SA-FR
1 .66 .23 .31 .34 .29 .31
7 .60 .20 .31 .29 .24 .23

13 .66 .23 .09 .15 .15 .19
19 .59 .22 .37 .32 .19 .25

RATIO
1 .73 .25 .36 .42 .30 .31
7 .64 .22 .33 .34 .26 .24

13 .72 .24 .10 .16 .15 .20
19 .62 .22 .42 .37 .20 .26

C - CLOUD CEILING
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TABLE 7 FOUR STATION PERSISTENCE

A) CORRELATION

E-W N-S

SP SU FA WI SP SU FA WI

V.61 KM .06 (.05) .13 .12 .09 -- .32 .25

C4800 FT .09 .10 .14 .15 .12 .31 .34 .27 S."ws

C- 12000 FT .25 .21 .25 .31 .32 .27 .43 .43 NO.

C6•4500 FT '.43 .36 .42 .42 .44 .36 .48 .45

C-68000 FT .46 .40 .50 .47 .47 .41 .50 .48

C A500 FT/V02 MI .16 .17 .24 .24 .17 .23 .41 .32 4

C -2000 FT/VS4 MI .36 .33 .35 .34 .43 .36 .46 .43

C.800 FT/V%5 MI .45 .41 .43 .40 .47 .44 .45 .39

B) RATIO

E-W N-S

SP SU FA WI SP SU FA WI

V 1 KM .25 (.30) .16 .27 .10 -- .39 .33

C 800 FT .40 .30 .28 .36 .16 .51 .41 .35

C 2000 FT .67 .61 .45 .56 .35 .28 .54 .49

C 4500 FT .63 .62 .56 .52 .46 .39 .52 .50

C 8000 FT .55 .47 .52 .50 .48 .44 .52 .49

C d500 FT/V2 MI .39 .47 .33 .43 .21 .30 .45 .38

CE2000 FT/Vi4 MI .64 .57 .48 .57 .50 .40 .49 .49

C eBO00 FT/V,5 mI .55 .49 .48 .50 .50 .49 .48 .42

E-W - Hahn/Saarbruecken - Frankfurt/Heidelberg

N-S - Frankfurt/Hahn - Saarbruecken/Heidelberg
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TABLE8 FOUR STATIONS, FALL

AREA PERSISTENCE (MEAN CORRELATION)

HoU V • 1 vi Ct•500n rriR. 0O0, Cr _ :.& a0flwr/V A Mt•i

1 .26 .28 50 .41
4 .22 ,23 .45 .35
7 .17 ,16 .46 An

10 ,lu .10 .45 .34
13 .14 .DZ .40 .38
16 .17 .17 .41 .43
19 .20 .20 .45 .44
22 .26 .23 .50 .42

(CORRELATIONS OF FOUR COMBINATIONS MTHREE'ETATION
VERSUS ONE STATION* AVERAGED)
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NONPARAMETRIC MEDIAN ESTIMATION -, W
Im *** *

(With Application to Number of Simulation Replications Needed)

J. R. Knaub, Jr.

U.S. Army Logistics Center

When the variance of results from replications of a simulation is small, It
is intuitively apparent that a small sample size (small number of replications)
will be sufficient. If four replications are made, for instance, and the
difference between the smallest and largest of the four observations is of
little or no practical importance, this sample size may be sufficient.

Often, ten observations can be thought of as a minimum sample size,

because, using distribution-free tolerance limits, there is a 75.6% confidence
that 75.0% or more of the population lies between the extremes of the ten
vtlues observed. With four observations, this confidence is only 26.2%.

If, as in the example above, the difference between the smallest (Ol) and _%A

the largest (04) of four observations is of little or no practical importance,

it is of Interest to find the probability that the median of the population
lies between the extremes of the four observations. This probability is

1-2 (½)4 * 0.875. If the centra l limit theorem is applicablel then the median
is approximately-equivalent to the mean. Thus, the mean of the sample, in this
case, is very likely to be very close to the mean of the population.

Suppose that seven replications are made instead of four. There is a
probability of 0.875 that the population median (M) will fall between the
second smallest (o0) and second largest (06) observations, which is the same

probability that M falls between 01 and 04 out of four observations. The

difference is that 06 - o2 in the case of seven observations, is probably

smaller than 04 - 01 for the case of four observations. See Table I for
details. Column 1 in this table is the sample size. Column 2 is the probabil-
ity that M will be located between the extremes of the sample of size n.
Columns 3 and 4 provide the probabilities that the 10% and 5% tails, respec-
tively, of the population will be drawn from at least once in n attempts.
Columns 5, 6, and 7 provide similar information, but for the case where 01 and

0 are ignored. Columns 8 and 9 are distribution-free tolerance limit results.

They provide the probabilities that 50% or more, or 75% or more of the popula-

tion is to be found between 01 and on, the first and nth ordered observations

(ordered from smallest to largest).

Although a fixed sample size approach could be taken using the tables
provided here, and some prior knowledge as to what variance will be experienced ,..

in most cases, a sequential approach would appear to often be more appropriate.
Consider the following equation:

s rte central lilt thneorem is applicaole it each observation Is actually
the mean ot a number ot observatlons*
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4.:

probability that the median of the
thhpopulation lies between thie 4t

smallest and jth largest or n

"observations, where oj is the jth

ordered observation.

J n+II

If one first determines the minimum acceptable value for PEoj i 1 < On+.j]

and the maximum acceptable value for 0n+..J - ,then one 0

may increase n and j until these conditions are satisfied. t,

Table 11 contains values for P[O j N • On+Il.J for selected

values of n and J. The rows are labelled by sample size (n) and the columnsby the number of ordered observations (j - 1) eliminated from both the low

and high ends of the set of ordered observations. (Therefore 2J-2 observa-
tions are eliminated,)

To use Table I1 in a soeuential manner, first determine the value of

On+l.j to be used, or perhaps (on+l. -- oj)/z

eand 09 vaue of PEoj < M : o
a t aeMj will be read fromn the table to deter-

mine the minimum sample size which could possibly satisfy the former criterion,
l1 conditions are not satisfied, look in the table to see how many more obser-
vations must be taken so that J may be incremented by one, and the criterion

for P[o 4 . M - 0n+l.j] met. After those additional observations

are taken, the other criterion (e,g.,O+.J OPj) can be chocked for the

new case, This process is repeated until both criteria are met.

Example:

Let the criteria be that PNo, - M < on+1j] must be greater than
or equal to 0.90, and that 0+l.J - oj be less than or equal to

2.0, where the observations are number of personnel required to operate a
. given unit as structured by a computer model. Looking at Table I1, it is

seen that at least five observations (replications) are needed.Suppose the
following observations are obtained: 42.6, 41.8, 41.91 42.1, and 43.9.

20U
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Since 01 = 41.8, and = 43.9, and 43.9 - 41.8 2.1 > 2.0, more observa-

tions must be taken. From Table II, it Is seen that at least three more
observations are needed, Suppose that the next three observations are 42.4,
43.0, and 40.7. Now, o2 = 41.8, 07 a 43.0, and 43.0 - 41.8 a 1.2 < 2.0.

Therefore, both criteria are met, and sampling ceases. A sample size of eight
observations (replications) has therefore been found to be adequate. Suppose
further that the central limit theorem is applicable in this simulation
analysis. The mean it 42.3 and the median is 42.4. Therefore, 42.3 is the
mean value to be reported.

Note that in many other applications, such as values collected in surveys,
the median is a far more appropriate measure to use. It would limit the
influence of any outliers, and since median estimation Is the focus of the
theory provided here, the application is exact.
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FORMULATIONS FOR TABLE I:

COL. 1: self-explanatory

COL. 2: 1 -(,)ll

COL. 3: ( 0 .8 ),l

COL. 4: (0.g)"l

COL. 5: 1 - (n*1) (h)"'~

COL. 6: (,)l*0n( 0  )f + O,Oln (n-1)(0.8)n"2

COL. 7: (0.9)n + 0.1n *,gn. +O00025n (n-1) (0.9)0-2
n-1 "COL. 8: 1 - n(O.6), + (n-i) (0.5)n

SCOL. 9: 1 - n(O.75)n~ + (n-i) ( 0 .7 5 )fl

*(1-2p)n + 2 pl (1..20)fl1 + p2n (n-i) (1..2p)n-2
where p w 0.10 for column 6and 0.05 f6r column 7

1-hY n1 (n-1) Y
where V' 0.5 for column 8 and 0.75 for column 9

% %i
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-Appendix A ,

DIMENSION ARRAY( 30,11)
OPEN(S,FILEu'FA .OAT' 1STATU.nOO 'IPKEEP '?
OPEN(lI FILgu'FAC.OUTI,STATUS.'NEWV,DISPm'KEEP)

100 READ($ S,i0ENDaO0O )N.J
10 FORMAT(IX,22,,lX,IZ)

SUMN-O
ANS=O
DO 200 1.1,J

CALL FACT(A)
9.1 -1
CALL FACT(S)
Cml .O/(A*B)
SUMNSUM+C

200 CONTINUE
XN-N
CALL FACT(XN)

ANSuI-O*XNNSUH
ARRAY(N,J)wANS

1000 CONTINUE

is ~fMA(,lX,'J-1',4X,'O', 6K 11, GX ''

00 116 N81,30 Jl1
16 WRI%1~2,I6)N,(AftRAYJN,J) J1,1

116 CONTINUE
STOP
END

SUBROUTINE FACT(O)
P ROD. 1
00 100 1.1, ',.
PRODOPROOIl

100 CONTINUE
0 P ROO
RETURN
END

Mrs. Ids 0. Priceg. j

A-1
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Appendix 8

Fnally, note the following: Suppose n! observations are taken, and then

n2 -n1 additional observations are taken in the event that the first n1 have an

unacceptable range. Let P[oie Mlon] v PO.2 SMso3. 1 ]. This is the procedure

recommended in this paper. It is o? interest to note that the probability
of saying the median has been bounded is larger in this two step method than
if all h2 observations were taken at once. This Is explained In the

unlikely event that the first n1 observations have an acceptable range,

but the first n2 (n 2xn1 ) are such that On.1 - 02 is too large. However, if

the first n1 are acceptable, it is more likely that these n1 values are closer

to the true median than any other value. This is analogous to applying a

chi-square goodness-of-fit test and calculating a very small chi-iquare
statistic. There may be a very small probability of having that value under
the null hypothesis; however, there is an even smaller probability of having
such a value under any alternative hypothesis. Thus, the null hypothesis is
the most likely candidate. Similarly, here It would have been appropriate to

: 'quit after n1 such observations as described above. The true median Is

probably indicated, although it was not likely that this would happen when the
underlying population probably was more disperse than Indicated by such an
early finish to this sequential procedure. Thus, one could stop after the
first step wi'th a savings in sampling, because the median may be located more
quickly than expected.

The above considerations affect the number' of observations needed; however,
it does not affect table I1 which gives the probability that the true median is
"bounded by two specific values found ih the sample. The considerations of this
appendix deal with the probability that the specific values will be close
enough at some step along the way.
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too.

PEAL, PASCDENSN,

100 I PPNie:LA PCMM .SAU.Ug.05PeI).

10 FORMAT(I*4,1I.IMZR)#Sp~4

00 200 too1

CALLUI~ PACT(S)

too COMMNU

CALIUNNC2(N

aSUBl UXINZ FASIM . "

D0 O 100 NO

1000 CONTINUE

CCUM

SUIROTINE AC 208

VoLS '"q~t
PROD.L.



3~ 1
4...

0 4 0,0750

to I

21 2 .10

4 23 000.710
tG 7
'032
to 4 9 1 000330

Its 131 1

10 2 *00

10 1 410

to 2 4 0.3121

16 7 950

60 so0276

300 10101

120 12 0994

121 14065

It0 2 06897 Al

it0 3 0.69041

109 4 0.1430

PI0 '.461

11 2 0.999



wrqACAbbornot s imrACAL6,Come

31~OC,*,IWmOS)W1 ISN OlMriCALL

00 00002.1

~~30 11

1P(N01.1.~D(X11J)XXI loo 00000,79126

20 CONTINUE 2I00000.7U129

EmO. 250000#659525
so toto)

150000003135
%not10,1

250000071213

10 000, 73121

16,7

so0000,71125

30,11

1000000,7.135

1000000071115
1OS4

100000,76121

*1 1000000,70126

1000000071115

2105

'M t t300* , 6
15a,55 .,



rORO00 D7 0,M.' .. ,.*,

100 000 7 125,

I0O'2 10.060100000 65557

100000 o1l 04 u0

1 0 1 0.4,1600
100000 712520

_3 1 05,27400
100000 7i121

4 1 031771000

100000 761254 2 037713400

250000 MI1S6 3 006110014

350000 ,,55717
9 3 0,144000asoooo allL •
9 3 0.6206720

250000 76125
9 4 0,4912S26

210000 70125
t0 1 0.9912160

250000 71125
10 2 0,9782400

250000 71126
1so 0.160 440

210000 70125
10 4 0,4562600

210000 71125
t0 1 0.2466600

500000 70125+•i+15co 7 25 0.9990760
100000 71125

16 7 0.5456920
100000 7112S

to 10 0,1769040
500400 781 21

30 It 0,90121100
1000000 71125

so 32 064434150
1000000 76125

6o 23 0.9071050
1000000 7012Sso 340o.546970I•
1000000 76125

120 S1 0.9176350

1000000 79125
120 52 0,8796270

1000000 71125
125 S3 o,9205760

1000000 7112S
Its 54 0,8922S70

5000000 76125
200 is 0,0232274

5000000 76125
200 n9 Ool62l3'
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QUANTILE-INFORMATION-FUNCTLONAL STATISTICAL INFERENCE,*.
AND UNIFICATION OF DISCRETE AND CONTINUOUS DATA ANALYSIS

Emanuel Parzen
Department of Statistics

Texas A&M University

ABSTRACT. This paper presents results from our research
program on the development of statistical methods based on
quantile-information-function estimation statistical
inference. Its major goal is to define, and to apply the
comparison quantile function D(u;F,G) of two distribution
functions F and G. We outline how standard methods of fitting
a parametric model F(y,e) to one or two random univariate
samples can be developed in terms of the empirical quantile
function Q"(u) by suitably defining the sample comparison
quantiLe function D"(u,O) - D(u;F',F(.,e) and the sample
comparison density function d~(u;6) - D-' (uie) for both
continuous and discrete data. In the continuous case we define
D~(u);e) - F(Q~(u); Q). In the discrete case we define first
d~(u;e) and then define D~(u8) to be its integral. Other
concepts defined include: continuous versions of discrete
quanttle functions, identification quantile function,
information distributions, and scientific statistical science.
Emphasis is placed on developing a notation which applies to
both discrete and continuous data analysis.

KEY WORDS. Quantile function. quantile density function,
i-6riia-i-on, entropy, function estimation. functional
inference, comparison quantile function. comparison density
function, identification quantile function, goodness of fit,
probability model identification, scientific statistical
science.

1. PROBABILITY MODEL IDENTIFICATION AND COMPARISON QUANTILE

Given data which one regards as a random sample (of size
n) of a random variable Y, one would like to infer the
probability law of Y. .'.

Ensemble Probability Laws. The probability law of Y is
describ•d-in geinerail Uy its -distribution function .. '.
F(y)-PROB[Y < y]. -- < y < -, and/or its quantile function

Q(u) - F 1 (u) defined by

Q(u) - inf {y. F(y) > u}. 0 < u < 1

Research supported by the U. S. Army Research Office Grant

DA.AG29-83-K-0051 .
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Sample Probability Laws ýNonparametric Estimators). The
f irst ate pin-iitThiilcal ifita analyis o-bT-arii-ndii sample is
to form the sample distribution function

F'(y) - fraction of sample <. y.

and the sample quantile function Q~(u) - F~'!(u). The
probability theory required to develop statistical theory based
on F"(y) and Q (u) is given in Durbin (1973) and Csorgo (1983)
respectively.

Parametric Probabilty. Laws. One approach to identifying
F(y) indn- " Is to asue a-parametric family of distributions
F(y;9) indexed by a parameter ' which ii an m-dimensional
vector belonging to a parameter space Sm.

This paper develops a general definition of the comparison
quantite function D(u;FjG) of two distribution functions F(y)
and G(y). The ensemble or population comparison quantile
function is defined D(u;G) - D(u;F, F(1; 0) ,.

The maximum likelihood estimator i can be shown to be
definable as minimizing a measure of distance between F(y;0)
and F"(y) or equivalently the distance between the sample
comparison quantile function D"(u.0) - D(u;F",F(, 0) and the

uniform distribution Do(u) - u.

2. GOODNESS OF FIT AND COMPARISON QUANTILE FUNCTIONS
"TMe r•eoes saimjpeoomparison quantTlo Tu-'n'ffoi is best

introduced by considering the goodness of fit problem: test
the hypothesis HOj:F(y) - F(y, 0) for some specified
parameter value 00,

When F(y;0O) is continuous one transforms Y to Z -

F(Y~eo), called the probability integral transform. Then
H0 is'equivalent to HO.Z is uniform on the interval 0 to 1.

When the sample consists of observations Y(1),....Y(n) one
transforms to ZQj - F(Y(j);0O). Let G"(u), 0 < u< 1,
denote the sample distribution function of Z(1),...,'Z(n). The
Kolmogorov-Smirnov statistic for testing HO is defined by

D n i sup F"(y) - Fy.o--0<y<- o

or

-n ' sup I(.(u) - u-
U<u<1
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One can show that "
D T/ , sp IG" (u . ul

n4

Dn <u<l

We propose that the sample quantile function G'-I(u) is
the most useful way to express statistics to test HO. One
reason for this is the elegant formula expressing G""1 (u) in
terms of the sample quantite function Q~(u) of Y(1),. . Y(n)
and the comparison quantile function.

;A--(u) - D'(u;O)
To make this formula concrete, let us consider the

realistic case of samples described by empirical probabilities,

using notation such as the following:

K, number of distinct values in the sample,
V(1) <...< V(K), ordered distinct values in the sample;

NV(J), number of sample members equal to V(J), for
J-l . .K

PV(J) - NV(J)/n, empirical probability of V(J)1

FV(J) w PV (1)+..+PV(J). FV(O) - 0.

Note that F-(V(J)) - FV(J) and FV(K) - 1.

The sample quantile function Q"(u) has the eleganth
formula:

Q~(u) - V(J), FV(J-1) < u < FV(J) for J-1..K.

The sample comparison quantile function has the formula

D~(u 0) - F(V(J)0), D 'V(J-i) < u < FV(J) for J-l...K.

To calculate the Kolniogorov-Smirnov statistic Dn let
Z(J)-F(V(J) ;Oo). Then

D n - J-1 ,... ,K (IZ(J)-FV(J)I .ZCJ)-FV(J-1)I)

To perform a goodness of fit test one needs both
numerical and graphical procedures. A rejection region for
H0 at the 95% significance level for large sample slzes n is:

21
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Dn > 1.36 for a simple hypothesis. and D > .89 if the null
hypothesis is the composite hypothesis o? a normal distribution
with mean and variance estimated from the sample. A numerical
procedure compares the value of Dn with these critical
values. A possible graphical procedure is: plot, on the same
graph, F (Q ) and F(ye00), More insight is obtained by
plotting D (u;0O) and Do(U) - u. In addition many
additional numerical procedures for testin g H0 can easily be
defined in terms of D (u;0O)-u. For example one might use
the Wilcoxon type statistic

WL (D' (u, 00 ) - u} du

Quick graphical procedures for identifying the probability
law of a random sample are provided by Q"I(u), the sample
identification quantile function defined below [section 4].

3. CONTINUOUS VERSION OF DISCRETE .Q.UANTILE FUNCTIONS
~ments can be sexp ~ hT er ~) thus

Mean M - Q (u) du ,. d,

Variance VAR - 2 du,

Standard deviation DS - VVAR .

We use a notation for mean and standard deviation which
providea analogies for measurea of location and scale based on
the quantile function

Median MQ - Q(0.5).

Quartile deviation DQ 2 2 (Q(.75) - Q(.25)) V.

Our concept of quaztiJe deviation (which equals twice the
inter-quartile range) is. motivated by the concept that in the
case that Q(u) has a derivative Q'(u), the derivative Q'(0.5)
is a useful universal measure of scale; DQ is a difference
quotient which can be regarded as a very rough approximation to
Q'(0.5).

An important step in our program for unifying discrete and
function a continuous quantile functon which is used to define

the median and quartile deviation of a discrete distribution.
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lop.

The distribution function and quantile function of a
discrete random variable Y are piecewise constant. For
example let Y be Bernoulli with PROB[Y - 0] = q.
PROBIY - 1] - p, where p+q - 1. Then F(y) - 0, qj 1 according
as y < 0, 0 y < 1. 1 < y. Further Q(u) 0, 1 according as

0 < u < q, q Z u < 1. We propose a method of associating with
a discrete quantili function Q(u) a continuous quantile
function denoted QC(u), which for the Bernoulli distribution
has value 0 at u - q/2, value I at u a 1-(p/ 2 ), is a line *of
elope 2 between these points, and has value p at u - 0.5.
Consequently the median MQ - p. in agreement with the fact that
the mean M - p.

We use the following notation:

K, number of discontinuity points of F(y);

V(1)<.. <V(K) values at which F(y) jumps,

FV() - F(V()); FV(o) -0, PV(.) F-v(J)-FV(J-1),

U(J) - FV(J)-(PV(J)/2).

We call UF(J), J-1...k, the midranks of the discrete
distribution F(y); the play a (two-) key role in data
analysis. We call V(J), J1,...,K. the probable values of the

discrete distribution.

The discrete quantile function Q(u) is given by

Q(U) - V(j). FV(J-I) < u < FV(J)

The continuous quantile function QC(u) associated with a
discrete quantile function Q(u) is defined to be piecewise
linear between its values at u - UF(J) where it is defined to
satisfy

QC(UF(J)) - V(J), J - 1 ... K.

For 0 < u < UF(1), define qC(u) - V(1); for UF(K) < u < 1,

define QC(u) - V(K).

For a discrete quantile function, we define its median and
quartile deviation by

MQ -QC(0.5). DQ - 2 (QC(.75) - QC(.25))

The mean and variance of the midranks U are denoted MI and

K K
VARU: MU - U(J) PV(J). VARU- ( {U(J)-MU) 2 PV(J).

J-1 J-1
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Always MU - 0.5. VARU is approximately 1/12 (the variance of a
uniform distribution on 0 to 1).

4. IDENTIFICATION QUANTILE FUNCTION
To a quantile' Rinct• Q)-,- one associates a quantile

function, denoted qI(u). We call QI(u) the identification
quantile function because its values near 0 and 1 and its
overall shape can be shown to provide quick heuristic methods
for identifying the type of distribution (normal, exponential,
etc.) and its tail behavior (short tail medium tail, long
tail; within medium tail, one can distinguish medium-short,
medium-medium, medium-long). An excellent discussion of these

concepts is given by Schuster (1984).

When Q(u) is continuous, we define QI(u) 7 (Q(u)-MQ)/DQ.
When Q(u) is discrete, we define Qi(u) - {QC(u) -Mq)/DQ. one
may similarly define the sample identification quantile
function Q"g'(u),

The definition and applications of QI(u) was pioneered by
Parton (1984) under the name of informative-quanti e function.

Transforming a random sample by subtracting its mean M, III

and dividing by the standard deviation DS, is equivalent to
forming the Z-Quantile function QZ(u) - {Q(u) -M}/DS.

5. COMPARISON QUANTILEAND COMPARISO1 ENSITY FUMOTIOS2

t-F-'' -nd F(y) be continuous distribution functions.
We define the comparison quantile function to he

D(u;F.G) - GF_1 (u).

Measures of distance between D(u;F,G) and Do(u) * u provide
measures of distance between F(y) and G(y). ,*5 ,

Although the mathematical definitions require no
interpretation for G and F, we usually think of 0(y) as a.
probability model for Y and think of F(y) as the true
distribution function of Y. The quantile function of Z - G(Y)

is 0F"'(u).

The quantile density d(u;F,G) - D' (u;F,G) is called a
comparison density function. Explicitly,

d(u;F,G) - gF 1(u) / f&' I(u) ,•,

Its interpretation is more evident by writing it as a
likelihood ratio:

d(uF,G) = g(x)/f(x) when F(x) - u.
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b. INFORMATION DIVERGENCE, ENTROPY, CROSS ENTROPY
When I and Wa-re hoF6Rhcniniuo-us. w-Tfhfi -epective

probability density functions f(y) and g(y), information
divergence is defined by

I(F;G) - f;. [-log {g(y)/f(y))) f(y) dy

Information divergence has a fundamental decomposition

I (F; G) - H (F; G) H ~(F)

defining cross-entropy H(FIG) and entropy H(F) by

H(F;G)- (:. {-Log S(y)) f(y) dy

R(F) -H(F,F) - i:. (-log f(y)) f(y) dy.

It should be noted that

p(F) - ) (-log fQ(u)) du (log q(u)) du

where q(u) n Q' (u) is the quantile-density function.
An important measure of the distance between D(u;7jG) and

Do(u) - u is the negative of the entropy of d(u;F.O)i

-H(d) - - 11 log d(u-F,G) du,.

By making a change of variable u a F(x), x - Q(u) one can
verify that -1'(d) - I(F;G). This fact provides a new
interpretation of information divergence as a measure of
distance between D(u;F,G) and u. Minimizing information
divergence I(F;G) is equivalent to maximizing entropy H(d).

7. COMPARISON DENSITY DISCRETE DISTRIBUTIONS
-Lot F(y)iand' G( bEd Tso edistriE i'one with the same

probable values V(1)<...<V(K). Their probabilit mass
functions are denoted PF(J) and PG(J) respecti.vely In ters"v
of FV(J) w F(V(J)) and GV(J) - O(V(J)) we define

PF(J) - FV(J)-FV(J-1), PG(J) - GV(J)-GV(J-1).

We define the comparison density function d(u;F,G) by

d(u;P,G) - PG(J)/PF(J) for FV(J-1) < u <_ FV(J).
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We define the ;omparison quanttli function

D(O;F,G) - fu d(t;F.G) dt

As an example of how d(u;F.G) provides a unified notation
for concepts that usually'are defined separately for continuous
and discrete random variables, consider the information
divergence of discrete distributions

.(F;G) [-log UPG(J)/PF(J))]PF(J)
J-1

One may Verify that

SI(F;G) - f1 (-log d(uF,G)) du

The chi-equared statistic is interpreted by

J! 0

Empirical probabilities are denoted PF"'(J). The
asymptotic distribution theory of chi-squared statistics can be
expressed as properties of the stochastic process D(u;F',)-u,G
assuming PG(J) is the true probability mass function.

8. WILCOXON STATISTICS i
An important measure of the "distance" of D(u;F,G) from u

is 7

WL(F;G) - -fl (D(u;F,G) - u) du

The Wilcoxon statistic used in two-sample nonparametric
statistical inference has mathematical similarities to WL; we
therefore call WL a Wilcoxon statistic.

By integration by parts one may show that

WL(F, U) - u u d(u;F,G) du - 0.5

When F and G are both discrete, WL has an important inter-
pretation in terms of midranks,
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I f , F(J) 1

f0 u d (u; F. G) du .' tF(J. 1) U du) (PG(J)/PF(J)) ••:

K

* PG(J) UF(J)

where we write UF(J) for the midranks of F(y) and UG(J) for the
midranks of G(y).

We can interpret WL as a difference of means of midranke
UF:

WL - EG[UF] - Es [UP]

One can also show that

WL - EG(UG] - E[UG].

9. BIVARIATE AND TWO SAMPLE PROBABILITY LAW MODELING
Te i il-qesoTompainig univ"&riatdi-&5Ej~f~u-Tlonfunctions 4

can also be used to model the relations between several
variables X and Y. Relations between Y and X can be expressed
as relations between the conditional distribution functions
PY:X(y:x) and the inconditional distribution function F(y). We
use : rather than to denote conditioning and we define

FY:X(y:x) - PROB [Y < y : X - x] *

The concepts and aLgorithms of conditional distributions
can be interpreted to apply even when X and Y are not random
variables. An example of this approach is the problem of ,.
comparing two samples.

The problem of the comparison of the distributions of two
random variables Y1 and Y2 given random samples

Y1 (1),...,Y 1 (n1 ) and Y2 M(),... Y2 (n 2 ) can be formulated as a

comparison of empirical conditional distributions with
empirical unconditional distributions. Let n - nI + n 2 .

Define n observations (X(1)IY()),....(X(n),Y(n)) of a pair of
hypothetical random variables X and Y by:

(X(j) ,Y(j)) - (1 ', (j)) if j - 1'...0 n.

(2,Y 2 (J-n 1 )) if j -n 1 +1,...,n
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The unconditional distribution of Y is the empirical
distribution, denoted F-Y, of the pooled sample
Y1 ((1),....Y ¥(n'i) Y2 (1).'" Y2 (n 2 )" The conditional distribu-

tion of Y given X-1, denoted F'Y.X ml, is the empirical
distribution of the first sample Y1 (1)."YIYl(nl)

In terms of the comparison distribution function

Dm(u) - D(u P"Y,F-Y-X a 1)

one can express the Kolmogoroy -Smirnov ,wo-sample statistic as
essentially the supremem of |D (u) - ul, and the Wilcoxon
two-sample statistic as essen ially the'integral of D~(u)- u.

One can give explicit formulas relating various statistics
which one forms in a comprehensive data analysis computer
program, and which are in fact equivalent to the Wilcoxon rank
sum statistic. Let

S - sum of ranks of first sample in pooled sample,

M - mean of pooled sample midranks UFT Y in first
sample (M - conditional mean of UT"Y under
F"Y:X - 1);

RU w rank correlation of midranks UFPY and UF"X.
(for truly bivariate samples, RU is the
Spearman rank correlation statistic).

One can show that:

M - (S/nIn) - (1/2n)

(RU) 2 - (M-O.5) 2 (12n,/n 2 )

10. INFORMATION DISTRIBUTIONS AND APPROXIMATIONS TO t AND F
DISTRIBUTIONS.

Another aspect of the unification made possible by a
quantile-information-functional approach is that statisticians
may be able to approximately compute sigificance levels of
standard statistical tests without having to consult a large
array of statistical iablei.

jo test H0 : Y is NO(1 ,0 2 ), IL - 0 against HI:Y is
N(4.0 ) one should use the log likelihood ratio test statistic
log A for testing 4 - 0 versus 4 0 0. which can be shown to
satisfy (see Kohatgi. (1984), p. 723, 725]
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Js.,

-2 log A - n J' , J- in (1 + VAR Y

The distribution of 3J is called an information distribution.
It can be described symbollically by writing

J" - In (1 + n T: t:n 1 )

where tn.1 denotes a random variable obeying a t distribution
with (n-1) degrees of freedom.

The sample correlation coefficient R- of a bivariate
normal sample has the property that the log likelihood ratio
test statistic for testing R w 0 against R 0 0 satisfies [see
Rohatgi, (1984), p. 724]

-2 log A- - n in (1-R 2 ) - nJ"

defining - - In (I-R" 2 ) . The distribution of J" is
an information distribution which can be described symbolically

i2
J" - In 11+ i n. 2)

Asymptotic distributt on of Information distributions. One
can show that asymptoti caly

n In (1 + I t2) + X2 , chi-square 1 d.f.

More generally, Let Fm,n denote a random variable obeying an F
distribution with degrees of freedom (df) equal to m and n in
the numerator and denominator respectively. Then

n in (1 +M Fm X2 . chi-square m d.f.nn (I+ m ,n) m =

To obtain a finite sample approximation to the
distribution of the information distribution we write

In 0 + 2 . /h(m.n)
(*) n inm(1+ F -m

where h(m,n) (which tends to 1 as n~u) is a constant given
explicitly by

2 { - I +m -2/m))-1
h(m.n) - h - 1 + -- )(
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__1-2 (n-i)
For n large, h - For m 1, h

* The constant h is determined by equating the means of both
sides of the representation for F implied by eq. (*):

x 2/nh
MF - e -1
n ru n

which determines h to satisfy

m 2- -(m/2)

- The high degree of accuracy of formula (*) in the case
M- 1 is discussed in a paper by Gaver and Kafadar (1984).

If one uses the fact that the t-distribution enjoys a

close approximation (for n > 7) by the distribution of %1]nh

then one need never consult tables of the t-distribution to
form tests of the hypothesis HO: p - 0o One can directly
interpret without any table lookup the statistic NJ' defined by

S~NJ' - (3.84)/h(1,n-1)J"

Reject H0 at the 5% level if NJ" < I . The interval
.5 < NJ"< 1.5 corresponds linearly to levels of significance
.995 > a > .905. The statistic NJ" is useful for sample size
determination; the minimum sample size at which the observed
value of J3 would reject the hypothesis that J - 0 is
approximately equal to NJ" times the observed sample size.
1 1. SCIENTIFIC STATISTICAL SCIENCE

This paper presented results from our research program
on the development of new statistical methods based on
quantile-information-functional statistical interence (which we
abbreviate FunStAT and call FUNctional STatistical Analysis
Technology). The overall goal of this research program is to
contribute to the development of scientific statistical
science.

We propose that statistical science be called "scientific"
(as opposed to."artistic") 'when it attempts to develop
statistical methods in a unified way that can be systematically
applied in many different fields of statistics. Scientific

. . statistical science is desirable for its elegance (in order to
help dispel the impression among applied s"c -e't-Tits and
engineers that statistical reasoning is at most a bag of
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tricks). Scientific statistical science is desirable for its
"tility, since it enables statisticians to adapt statistical

methodls (in order to develop for different problems innovative
methods customized to the unique features of each problem).

Scientific statistical science may be a necessity in the
emerging era of "PC/StAT", personal portable computing
statistical analysis technology. Statistical computing for
personal computers can be developed to be interactive for ease
of use and for effective integration of classical and currently
emerging styles of statistical data analysis. The high cost of
data relative to computing makes it sensible and wise to
analyze one's data from as many points of view as possible. A
unified framework for statistical reasoning will make it
possible to more rigorously combine the results yielded by
different algorithms which are applied to tne same data.

Examples of identification quantile functions and
comparison quantile functions generated by our IBM PC program
EPSTAT are given in a separate report available from the
author.
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THE DISTRIBUTION OF A WEIGHTED VISIBILITY
MEASURE ON A LINE SEGMENT UNDER SHADOWS
CAST BY RANDOM DISKS HAVING A BIVARIATE

NORMAL SCATTERING*

M. Yadin and S. Zacks
T~chnion, Israel Institute of Technology and
State University of New York at Binghamton

ABSTRACT

The present paper develops formulae for the computations
of moments of a weighted measure of visibility along
short line segments in the plane, when the shadowing
objects consist of N (fixed number) of disks, which
are randomly scattered around the origin, according to
a bivariate normal distribution. These moments are
based on visibility probabilities of points on the line
segment. Formulae.for the computation of these prob-
abilities are derived. These formulae are based on the
probabilities of general rectangles, half circles and
triangles when the points have a bivariate normal dis-
tribution. The appendices provide formulae and FORTRAN,..,,
subroutine functions for the computation of the required
functions. An approximation is given to the distribution
of the random measure of weighted visibility. The results
of this research are applicable in various areas. In
particular in the evaluation of the performance of laser
range finders and other similar problems, when random
objects in the field cast their shadows on a target.

Key Wokda:s VZ6bitity, weigh.ted me.uute od vi46ibitiy,
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1. Introduction

The present paper is motivated by the following actual problem.

A laser beam is oriented from a source at a point (xo,yo)to a

line segment, T, whose center is located at the point (xt,Yt). ,i i,

The energy in the beam is maximal at its center and is tapering

off fast as the distance from the center increases. A common

model for the distribution of the intensity of the energy around

the center, of the beam is the spherically symmetric Gaussian

distribution, with very small standard deviation. Certain portions

of the beam may be obstructed by obstacles which are randomly dis- si

persed in the field. These obstacles could consist of different

types of objects which are in the field, such as trees, bushes,

piles of dirt, etc. The ray does not penetrate through such

objects. it such an obstructing object intersects any ray from

(XoyO) to T, we say that the object casts a shadow on T. There

may be different, sometimes overlapping shadows which are cast on

T by different objects in the field. Thus, certain points on T

are in the "light" and certain ones might be in the "dark". Let

(xR,JR) denote the right hand limit point of T and (xLYL) its left

hand limit point. Let A -R-XL. We assume that the intensity

of a ray connecting (xyo) with a point (x ,y ) on T is proportional

to the normal (Gaussian) probability density function (PDF). The

intensity function, w(x), is normalized, so that its integral from

xt-A to xt+6 is equal to 1. We define an integrated measure, W,

of the random amount of light (energy) that reaches T from the

source. W is a random measure having a distribution which depends

on the characteristics of the random field of the shadowing objects.

In our previous studies (Yadin and Zacks [3,4]) we discussed
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properties of random visibility measures when the shadowing objects

are disks of random radii and random location. Furthermore, we

assumed that the number of centers of disks falling within any

specified (Borel) set, B, in the plane has a Poisson distribution

with mean X(B). The radii of disks may or may not depend on the 7

location of their centers. Such a model is called a Poisson

random field of shadowing objects. The present study follows a

different scattering model. First, we assume that the number of

disks, N, is fixed (finite). Furthermore, given any partition of ...... .̀

the plane to (Borel) sets Bi, sell Bm, the number of disks l '' * m't

whose centers belong to Bit as*# Am, respectively, have a multi-

nomial distribution, with probability vechor (wit, ..OF I m) which

depends on the specified sets and on the stochastic scattering

mechanism. in addition each disk has a radius which is a r3ali-

zation of a random variable with a specified 4istribution. Such a

model is called a multinomial field of shadowing objects.

In the present paper we further assume that the oenters

of disk have coordinates which are independent random vectors

having a given bivariate normal distribution, and that the radii

of disks are independent and identically distributed random variables,

independent of the center locations. The motivation for studying

such a model is due to a particular military application, in which

the shadowing objects are artillery rounds. N rounds are scattered

according to a bivariate normal distribution around an aim point

(x*,,y*). Each round when exploded creates a cloud of dust and

debris of random size. A planar out of such a cloud is modeled
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as a disk. The model of the present paper can be further generalized

to cases of several clusters of N disks, each one characterized by

a different bivariate normal distribution.

In Section 2 we formally present the structure of the field

and the probability models of the associated random variables. in

Section 3 we discuss methods for computing the probability that

any specified point on T is in the light, and the probabilities

that any n specified points of T are simultaneously in the light.

These are called visibility probabilities. The visibility prob-

abilities are required for the computation of the moments of the

random measure W. In Section 4 we discuss some properties of the

distribution of W and the computation of its moments. A beta-

. mixture approximation to the distribution of W is discussed in

Section 5. In Section 6 we discuss the subroutines which were

programmed for computing the moments of W and the parameters of

the beta-mixture approximation. Numerical examples are presented

in Sections 3-5. As shown in Section 3, the computation of the

visibility probability of a point requires subroutines to compute

the probabilities of arbitrary rectangles and half-circles, under

a standard bivariate normal distribution. The determination of

the simultaneous visibility probability of n points, n > 2, requires

subroutines for the computation of probabilities of arbitrary

triangles under standard bivariate normal distributions. Formulae

of these probabilities are derived in Appendices A and B. A.R.

Didonato and R. K. Hageman (2] published a method for computing

the probability of an arbitrary polygon under a bivariate normal
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distribution. Their method is based primarily on the computation

of probabilities of angular sectors. The leading factor in such
2'computations is exp(-R /2) where R is the distance of the vertex

of the angle from the origin (the center of the bivariate normal

distribution). The main formula cannot be applied if R is large

and some asymptotic approximations are provided. As shown in the

examples, we are interested in triangles having at least one

vertex which is very far away from the origin (R > 100). The

direct calculations which are presented in the appendices do not

require computations of angular probabilities, as in Didonato et al

[2]. The oubroutines provided in the present paper yield very

accurate results in a matter of a few seconds of computer time.

2. The Theoretical Model

Let Po Xo denote the source of the light (laser) beam.

Let T be a line segment of width w - 2A centered at pt "(xtyt)

and perpendicular to the line segment FT Furthermore, let
o t

P (xa' ) and PL " (XL'YL) denote the right and left end points

of T respectively. Thus, if bt denotes the slope of the line

through Pc and Pt, the coordinates of P. and PL are given by

xa x + AlbtIl/(l+bt)

xL -xt - Albti/(l+b ) 1 2

(2.1)
YR " Yt + agn(b )6/(1+b 2 )1/2

t +

2 1/2*

YL " yt -gn(bt)A/(l+b2)
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where sgn(bt) is the sign of the slope bt. Let D, D2 . D"'

be N random disks. Each random disk is characterized by the

triplet (Xi, Yi' Ri)' i - 1, ... , N, where (Xi, Yi) are the

coordinates of the center of. the disk Di and Ri is its radius.

We assume that (XI, Y1), ... , (XN, YN) are independent and identi-

sally distributed (Z1D) random vectors having a bivariate normal S

distribution centered at the origin (0,0). Without loss of

generality we assume that the bivariate normal distribution has

zero correlation, i.e., p-0. Zndeed, if p#0, one can apply the

orthogonal transformation (X', Y') - (X,Y)(B), where (B) is a 2x2

matrix consisting of the sigenvectors of the covariance matrix

of (X, Y). The orthogonal transformation B maps the random disks

into random disks having the same radii. Furthermore, the die-

tribution of (X4', ¥V) is bivariate normal centered at (0,0)

with correlation zero and variances X and X2, respectively where

X and X2 are the eigenvalues of the covariance matrix

•2 PCxa

PCxay a 2S
umm~

These eigenvalues are

x2 2~ 2 21 p ]1/2 _+ 2 - ) J

(2.2)
2222A2 2x 2 +4 2 a2 a t2

2 2 X yo o)2 Y- + ..... 4 P 0 x0yJ
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I..

The elements of B are Bj, i, j - 1,2 where o.

blj * j

(2.3) b~j"o (0.2- Aj

2* y + 22
2 + 2 2 13/2oi H [ax - a xay .Y) - 1#2.

The points (xooyo), (xR'YR) and (xL#YL) are tranformed to

corresponding points (Co0o)0 R"(R, ' (L"L)' The line segment

T is transformed to the line segment T', connecting (CLuTL) with

The radii of the random disks, R1, ... , RN, are assumed to be

independent random variables, having a common distribution, OR(r)",

concentrated over the interval Cahb, where 0 5, a 4 b ( *. t iO. 1

also assumed that (Ri! i-l, ... , N) are independent of ((xiyi)IuM..,...,}. .•.

The randomly scattered disks may cast shadows on T. Xn Figure 1I

we illustrate a possible realization of such a random shadowing

process, in which N - 4 disks are randomly scattered. Two disks

cast shadows on the line segment T. Thus, creating two dark

intervals at the edges of T and one visible interval in the middle.
2.3

* 4-

* .i.

j:•.•
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P2?
Pt

;/P

PoP

FIGURE 1. The Light MLaser) eam,, and the Shadowing ,Di'sks

Let P - (xy) be a point on T, and lot 1(x) - 1. or 0 if P is

in. the liqht (visible) or in the dark. The integrated measure of

*visiblitJy on T i

(2.4) W 0 )X I (x)dx

xt-A

A~ f M(uI (xt Pru)du
* -A/T

where O<T<r is the standard deviation of the dispersion of the

1

beam# and 0(u) - exp(-u2/2 ), -,xu<U, is the probability
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density function (PDF) of the standard normal distribution.

Moreover, A . 20( )-il, where O(z) is the standard normal integral..

Notice that W is a random variable assuming values in the interval

[0,1]. W - 0 if T is completely in the dark and W a 1 if T is

completely visible. The distribution of W has two jump points,

at 0 and at 1. In the open interval (0,1) the distribution of W

is absolutely continuous. Let 1w(w) denote the cumulative distri-

bution function (CDF) of W and let p0  Pr(W'-0}, p 1 Pp{Wm-l), then

WW
(2.5) F w(W) *{ 0+l-oP 1 f;(Yd , f: 0w

where gw(w) is the PDF of the absolutely continuous component of

FW(w).

3. Visibility Probabilities

In the present section we develop formulae for the probabilities

that rays connecting P0 with n (n>l) specified points on T are not ~. .*:4-.

intersected by any one of the N random disks. The methodology

always follows the following algorithms

S.1. Determine the set S(r) of (xy) points such that,

if a random disk of radius R-r has a center (xy)

in B(r) then at least one of the n specified rays

is intersected by the disk.

8.2 Determine the probability of B(r), i.e.

1 ff 2, 2
Pt{xB' (x +y ))dxdy

8(r) "•
fi fil
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S.3. Compute the total probability

b

H - f Pr(B(r))dGR(r).
f Ra

S.4. Compute the simultaneous visibility probability of the

n points.

-(I-H) N

3.1 The Visibility Probability of a Single Point on T.

Let P = (xy) be a point on T. Let PO be the line segment

connecting Po with P. The set B(r) io the union of a rectangle

C0 r) and two half circles CiO)and C2(r (see igure 2. Two

sides of. Co(r) are parallel to % apd at distance r from it. The

half circles Ce(r) and C2 (r) are each of radius r, and are attached

to C0 (r) at the sides perpendicular to P Zn Appendix A we

provide the formula for the computation of Pr(B(r)} in the case

that GR(r) is a uniform distribution on CO,b]. Let HI(xoyoX,y)

denote the H-function corresponding to the present case. This

function provides the probability that a random disk intersects

PFP. The visibility probability of the point P is
0

N(3.1) *IlXoyoXy} (1-Hl(xo'yoyx'y))

Notice that for large values of N,

(3.2) S. (xoeyoxy)uexp('Ai(Xo,yo,x'y)) '

where A1 (Xoyox,y)"NH1 (xoy, oxy •
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SY

0(r) m Shaded Set 4

PC

FIGURE 2. The Set Br)_ for the.-Visibility Probability of a,S, nqle ,Po nt,

3.2 Simultaneous Visibility Probability of ni2 Points on T

Consider three points Po-(xoyo), 2l-(X1 ,Y1 ) and P =(x 2 ,y 2 )

in the plane. Let T(xoly,¥o ,X 2 ,¥2 ) denote the bivariato

normal probability that a random vector (XY) belongs to the met

inscribed by the triangle AP0P1P2. We adopt the convention that

P0 is the vertex having the smallest y coordinate, and PIP 2

are reached from Po in a counterclookwise direction. In Appendix

B we provide the formula for determining T(xoyoly I x 2 ,y 2 )

The set B(r) corresponding to the simultaneous visibility of two

points, P1 and P2 on T is shown at Figure 3.
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Y P210 21

x

FIGURE 3. The Set 3,(r) for th. Simualtaneous Visibility of

Lot Pt(r) a (x (r)D yt W) r 1-0#1,2 1 be the vertices of the

triangle AP (r)P (r)P+(r). The sides of this triangle are

parallel to those of A P1P2and at distance r from them.

AP (P()P r s notrtinl of distance r. Similarly, we'

define an inner-triangle of distance r, APO(r 1~rP) The44

inner triangle is contained in APO PiP 2 0 with sides parallel#

respectively, to thoue of AP P P2  and at distance r.
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The set B(r) corresponding to the points P 0,P 1 and P2 is contained 'S

in the set AP+ (r)P (r)p +(r)-&Po(r)P-(r)P2(r), which is the r-outer

triangle minus thm r-th inner triangle. If the distance of the

point P0 from the origin is greater than 4 the probability of B(r)

is given to a high degree of approximation by

(3.3) Pr(B(r)) I T(x +(lo (r) p +y(r ,(r)r +y1 (r)f + ,x +(r) yr)

ST(xo(r),y;+(r),x-(r),yj(r),x(r)py (r)).

We remark here that in certain instances the inner triangle does

not exist. In such oases we say that the inner triangle is an

empty set, and its probability iS zero. We further remark that

in the many actual applications the source of light is more than

4 units away from the origin, and formula (3.3) provides excellent

approximation. The conditions urer which the inner triangle does

not exist is given in formula (3.4) below. The H-funqtion

corresponding to (3.3) will be denoted by H2 (Xfyo,xl,yl,x2 ,y 2 ).

This function is evaluated by numerical integration. For the

determination of x Cj(r),yi (r)(i-O,l,2) and of xj(r),yj(r) (i-0,l,2),

we distinguish between five cases:

Case 1: x2<Xo0 <X1

Case III xy2 <x 1 Mxo0

Case lIII x 2 <x 1 <x 0

Case IV: x0 - x2<X11

Case V: Xo0 x 2<X2 .
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T~et y=al+Ylx be the formula of the line Fassing through P0 and

let y=a 2 +b2 x be the formula of the line passing through P1 and P,

and let y-a 3 +b3 x be the formula of the line through P2 and Po.

The line passing through P"(r) and P (r) has in Case I the formula RM

yial-r(l+b2) /2+blx. Similarly, the line through Po(r) and P+(r)

I~~ th oml 1/2 +
has in Case I the formula y-a 3 -r(l+b )I+b 3 x" x+(r) is the

x-coordinate of the point of intersection oZ these two lines.

In this manner one can obtain explicit formulae for the coordinates

xi(r), y(r), i-0il,2; and of x y" (r),•ir). These formulae are

listed in Appendix C. Ir, all the above five oases, the condition

under whicuh the r-inner trianqtle is empty is

(3.4) a +r(l+b2) 1/2 +b~xr$~)

3.3 Probabi.lities of Simultaneous Visibility of n Points on T.

Let PiM(xi,Yi), i-l, ... , n, be n points on T, such that

Xn<xn< ... < x1 . Generalizing the results of the previous
section, the probability of B(r) is given approximately by

n-i-il T(x°' i( 'o,i-(r) ,x- )'Y-),x+ )'Y+lr).
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Notice that some or all the r-inner triangles might be empty and

the corresponding T-functions are then equal to zero. The condition

under which the i-th inner triangle is empty is

(3.6) a +r(l,.+b 2 ) 1 /2 +bb x (r) I y (rý , i-i ... , n-1.

n A n 0± 1 ~

an and bn are the intercept and slope of the line passing through P1 and Pn

The coordinates xo,i(r) and y;,i(r) can be obtained in the following

manner. Consider the triangle AP0PIP+.1+* The coefficients a 2 and b 2

in the formulae of Appendix C should be replace4 by an and bn.

a 3 and b3 should be replaced by the intercept and slope of the

line through P0 and P i+1  i.e., ai+l and bi+l. Finally, the

H-function corresponding to (3.5) is denoted by Hn(xoYo#xiYi,

mosXnyn)u. The probability that n points are simultaneously

visible is

(3.7) *n(x oyoXlYl,...,Xhfnn (1-H nl(x oYo,..,*x nlyn)l --

EXAMPLE 3.1

In the present example we illustrate some of the visibility

probabilities. The parameters of the calculations area

N-20 x0WO xt-O

x'ml yo- -33.3 yt" -.333

Oy-1 A-.167 b-.333

GR(r) is unif'orm on [O,b].
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We consider k=7 triplets on T, having coordinates (xi,l'Yt)'

(x i,2,yt and (x i,3Yt), where

x1, 3 - - A+U/4, x2- iA/8 and x,. , A - ,...,7.

Let *li w 1(lXoIYo'Xi,3 ' yt)

*2,1 m"*2 (Xoyoxitlyt,Xi, 3 ,yt)

*3, " * 3 (Xo0 ,o'XiltYt'Xi± 2 iyt'Xi, 3 'yt)'

The values of theme visibility probabilities. 4re~s

1 .3080 .1233 .1108 .,

2 .3064 ,1360' .1,262

3 .3055 .1516 .1439

4 .3052 .1692 .1642

5 .3055 .1927 .1895

6 .3064 .2201 .2186

7 .3080 .2539 .2534

, u . ,,,.u • m : . .. . .:

Notice that *l,i'is syansetric around the origin (4.=4). The

simultaneous 'sisibilities of two and three points increase as

the points become closer. Notice also that *2,i and are

quite close, for each i, and that their diffezence diminishes as

the distance between the three points decreases.
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The probability p, that the line segment T is completely visible

is determined in the following muanner. Let

(3.8) H*(xo,yo,XR,yR,xLyL)

b

H*(xoyo,X1,yR,xI.,y) is the probability that a random disk will

cast a shadow on T. Hence, the probability that T is completely

visible is

(3.9) pl. ( I.• XoyoxR,¥RXVYL})N

4. The Moments of the Random Measure W.

The k-th moment of W is given according to (2.4) by the formula

(4.1) IAk E~s{ f *(u)I(x t +u)du) k
iAA/T

k~ X

Ic

ki r *ý(uiw -T I(xt+Tui)} dui _ARf fimlil

where Sk ,-" I<Ukl<.*u2ul</¶} .

moreover

(4.2) R i I(xt+ ui)} - *k(XoYo,Xt+TUl,Yl,...,xt+TUk,Yk).

is the probability of simultaneous visibility of the k points.
r, ,*.-,*
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Making the transformation z uio, iml, ... , k, the k-th moment

of W can be expressed as

1 1 1 1
(4.3) e f 0*(A f O(A ) .

-1 zk zk-l z 2

*k(Xo'yopXt+&zl'yl''"'xt+AzkWyk) dzl'",dzk

Notice that yi-a+$&zj (il, ... , k), where a and 0 are the intercept

and slope of the line segment T. In particular, the expected

value of W is

4.4. - AT f1,(z)*1 (x,•yoxt+A,,yt+.OAz)d.

The second moment of W is

(4.5) 
(2 A

-l4

Xt+4z,,yt4rs)dvildz2  .

These integrals have to be computed numerically, as diacussed in

Section 6. The computation of a high order moment according to

(4.3), with a high degree of accuracy, is time consuming. One

can obtain, however, lower and upper bounds for 1A(k> 3 ), in a

manner which will be readily discussed. We precede this di.scussion

with the following comment: An k+- ok approaches pl. Indeed,
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according to (2.5),

(4.6) Ik " (l-Po-P1) f ykgW(y)dy + pl.

0~

Hence, by applying the Dominated Convergence Theorem, 1IkJPl as

To obtain bounds for Uk(k,3) consider the inequality

(4.8) *I(Xoyoxlylxk, yk) •

*OklXoYoXl'yl~x2,y2",. xkyk) ',

V2( (o'Yo'x l'yl'xk'Yk), I

for every k•3, where *I(XoYoXlylfxkYk) " (l'H*(xoyoxl,ylXk,yk)) N

This follows directly from (3.5) And (3.8). We remind that
*(xoyoXly 1 ,XkYk) is the probability that the entire interval

between (x11y )and (XkYk) is visible. Substituting these lower and

upper bounds of *k (xoyoxlYl,...,xkYk) in (4.3) we obtain lover

and upper bounds for Uk" Thus, if Pk,L and Pkpu denote the lower

and upper bound for Pk one obtains, for every J_•3, 0-

k (kl)&.2  11
(4.9) krL k-2 r k f )

-3.

* , (XoYOx +AziYt+Az, x+&3,a +AgZ)
20 0 o tt lt klt k

[OA (•z) -O (•z) H k-2 dz dz
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7 74 77 7

where (-). is the standard normal integral.pku is obtained from

(4.9) by replacing the function ** by '2 The proof that sub-

stitutLon of * in (4.5) yields (4.9) can proceed. by induction.

Indeed, for k-3 we obtain from (4.3)

313 f (•3) I ('2 *•1 F(3 1 ,, 3 )d3 1 dz 2dz 3
(4.10) 03,L A 3 f2

whe~e Flulz 3 ) - 1(XoYoxt+Azl,yt+Aozxlxt+Au 31yt+4B. 3 )

Furthermore

1 1

(4.11) A f A

322

T T 1 * 4.103) yieTd 2f. ) *-)d. 2 .12 3 a 2

1

f A

23

Substitution of (4.11) in (4.10) yields (4.9) for k-3. For k>4

one obtains from the induction hypothesis,

(4.12) fl ~czj+ *(Au) f j A-Zl P( d oodzjlN
2T f j+f J+ T12
J+2 ~J-1 2

1i JT f OT ZlPz~k[(Tzl)-TZJ-r)3 I

2j +2

for all J-l,2,...,L, qk-3othat
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(4.13) J (Az~) J ~ . ( )F(zl zkdz .dz~+XT L2 OL+I1)f0(

0( TF f ZI~+2 T fM *(Z.!(lk)(o(A3l)4o(AZZ+2)jdz z X+
3t+3 z 1+2

But, 3.

f + Tu JL I.- T.. u+ 2 '~L+2

1+3+

Substituting (4.14) in the right hand side of (4.13) we obtain

Z+3Z2 2

In particular, for X-k-3, (4.3) and (4.15) yield (4.9).

Example 4.1

In the present example we illustrate numerically the bounds I

for the first 10 moments in a given case. The first two moments

are computed exactly according to formulae (4.4) and (4.5). The

loll,
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bounds to the moments of order k>3 were computed according to (4.9). The

parameters of the computation are:

x - a¥ - 1
y

Xo-- 333

yo a -100.

t a -. 333
Y

A .167

- A/3

and a 0, b .333.

The first two moments are P, .3057 and V2 .2375. The lower and

upper bounds for u., k-3, .,., 10 are given in the following table.

k 5 6 7

Lower .2099 .1950 .1047 .1771 .1711 .1662 .1622 .1588

Upper .2147 .2014 .1924 .1858 .1806 .1765 .1731 .1703

TABLE 2. Lower and UP;1er Bounds for •k' k-3, ... , 10.

A good estimate of Pk can be obtained as the midpoint between

the lower and upper bounds. The limit of Vk as ko is pi-.0855.

I''
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5. Approximating the Distribution of W and Determining p0.

The CDF of W is a mixture of a discrete and absolutely con-

tinuous component, as presented in formula (2.5). The only element

of that formula which we have already discussed is p1, as'

specified in formula (3.9). We provide here an approximation for

PO and for the absolutely continuous component of F (w), which is

called the beta-mixture distribution.

The beta CDP is represented by the incomplete beta function ratio

x u (1-u) 2  dux l2 MY f- 644-

where 0Vv 2 <V, and B(V1 1v 2 ) is the complete beta integral. This

two-parameter family of distributions can represent a variety of

different shapes and forms of distributions on the interval (0,1).

We, therefore, approximate F¥(w) by the beta-mixture.

(5.2) Fwlw) Vp + " , 0<w€i

and, obviously FM(w) - 1 for x>l. The parameters p vl andv2 of

(5.2) are determined by equating the first three moments of (5.2)

to those of W. The solution of these moment equations (see 13]) is

1l (2 1u-i (uii+j) ) /Det.

(5.3) V"2 = - 2 p2-p1)Dt

and
hrepc " l' l'i I~+:)/v1  2 •!:

where-i-P 1 (i-1,2,3) %nd Dot. - ' '-(I•)

24S,
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Examgle 5.1,

Zn Table 3 we provide a numerical illustration of the beta-

mixture approximation, under the parameters a x-a y-, x0- -. 333,

you -100., xt-0,.333,*.666, 1.000, 1.333, Yt" -. 333, A-.167, T-A/S

and a-O, b-.333.

xt 111 "2 3 PO pl 1 V2

.000 .3057 .2375 .2126 .6928 .0855 53.3 .357

.333 .3257 .2570 .2314 .6728 .0980 52.9 .353

4, .667 .3864 .3170 .2898 .6120 .1404 52.2 .340

1.000 .4854 .4190 .3914 .5131 .2261 55.1 .324

"" 1.333 .6105 .5538 .5287 .3884 .3633 67.6 .312

TABLE 3. The First Three Moments and the Parameters of the
Beta-M xtur. Distzibuti.op..

The beta distributions with vi1 and 0<v 2ci have PDF'u which are

monotonically increasing from 0 to • . They are called J-shaped

"distributions. In the cases of Table 3, since vi is very large,

most of the mass of the absolutely continuous component is concen-

. trated near the value W-1. This means that the distribution of W

is almost a 2-point distribution. For example, xt 0, W-O with

-*. probability po".693 and with probability .307 W>.95.

The values of (5.2) in the case of xt-0 are given in

Table 4.

2,5Z:4
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W 0 .90 .950 .955 .975 .985 .995 1.000

FPl(w) .693 .693 .694 .698 .707 .719 .744 1.000

TABLE 4. The Beta-Mixture Approximation to Fw(w), in the
Came of x

t

6. Numerical Comptations

The numerical computations of Tables 1-4 were performed on an

IBM-370 system. The programs were written in FORTRAN. They consist

of the main parts and the following subroutine functions.

1. FUNCTIZON VPT (X*,Y*,XTYTB)

2. PUNCTION TRL (X*,Y0,XlYlX2,Y2)

3. FUNCTION BVP (KXI,YoXl,•Y1X2,Y2,X3,Y3,3)

4. FUNCTION TVP(X~jY*,XlYlX2tY2v3)

5. FUNCTION CNDX(Y)

6. FUNCTION BETA(XVlV.)

and

7. FUNCTION GAMA(V).

Subroutine functions 5-7 compute the standard normal CDF, the beta

CDF and the gamma function, respectively. Subroutine VPT(Xr,Y$,XTYT,B),,'

computes the visibility quobability of the point (XTYT) from the

soircc (X•,tY), where the distribution of the disks radii, R, is

uniform (rectangular) on the interval (0,B). The subroutine TRL

(Xý,Y¥,XlY1,X2,Y2) computes the standard bivariate normal probability

that a pcint (X,Y) falls within the triangle with vertices .
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P c=(x'Yo)' PI=(X1,Yl), P2 =(X 2 Y2). P is always the point with the

smallest y-coordinate. The vertices P1 and P2 are reached from

P0 in a counter clockwise direction. The subroutine

SVP(K,XO,Y4,Xl,Yl,X2,Y2,X3,Y3,B) computes the probabilities H2 or

H3 for the simultaneous visibility of km2 or k-3 points (see

formula (3.7)). K-2 or K-3 is the argument for the number of points.

If K-2, the only arguments which are taken into account are

Xj,Y¢,Xl,YlX2,Y2 and B. The values of X3 and Y3 can be arbitrary.

The points Po0 (X0,,¥), PI-(Xl,Yl) and P2-(X2,Y2) are the vertices

of the triangle, while P3 -(X 3 ,Y 3 ) is a point in the line segment

connecting P1 and P2. The function TVP(X0,Yr,X1,YlX2,Y2,B) 5,

computes the probability H*(xoyoxlylx 2 ,y 2 ). The subroutine

functions VPT and TRL were programmed for the standard bivariate

normal model with zero correlation, i.e., a bivariate normal dim-

tribution centered at the origin, with ax-ay-l and P-0. In actual

problems the variances of X and Y are generally unequal. In such

. cases we make the additional transformation x+X/a and y~y/cy. Thisx y*
S reduces the model to a standard bivariate normal. The random disks

are transformed to random ellipses. However, we replace each such

random ellipse by a random disk having a radius equal to the large

* radius of the corresponding ellipse.

* The moments ji' P2 and the lower and upper bounds for )k(k> 3 )

are computed according to formula (4.9) by employing the subroutine

-functions TVP and SVP and using a Gauss quadrature 12-point numerical

* integration (see Abramowitz and Stegun [1] pp.916). The FORTRAN

programs of these subroutine functions are given in Appendix D.
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The main program reads the parameters of the problem and reduces

it to the standard bivariate normal model under which all the

computations are performed. Vor examplA, suppose that a source of

a laser beam is located at the point (-1, -3000) and a target of

width 1 is centered at (0,-l0). Nw20 disks are acattered according

to a bivariate normal distribution centered at (0,0) with parameters

aox-3, a y30 and p.0. The radii of disks are uniformly distributed

in the interval (0,I). The transformation x'-x/o,, y'amyP, b'mb/oa,
y

w'-w/Cx reduces the above parameters to those of Table 3.

i'I
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APPENDIX A. The Bivariate Normal Probability of a Rectangle with
Two Hal.f Circles and The Probability that a Random.
Disk Intersects a Line Segment

We develop here formulae for the computation of the otandard
bivariate normal probability of the set B(r) described in Figure 2.

The set B(r) is the union of a rectangle C0 (r) and two half circles
i•_ Cl(r) and C2 (r), having a radius r. The rectangle Co(r) has two

a 2etkil 0 '

sides which are parallel to the line segment p~p' where Po=(Xoyo}

and Pt=(xt,yt). Moreover, these sides are of distance r from

S0 P--t We provide now a formula for P r{C or')). We distinguish

between three cases:

Case It xt<xo ,

Case XI: XtOx0 ,

Case III: x >x

In Case II we have

(A.1) Pr Co ( r)}) * [(xt+rl-Olxt-r)] [(Ytl-OlYo)]#

where O(z) is the standard normal integral. In Cases I and III wo

consider the orthogonal matrix

Ta I:1 - l
-, (.2 (l+B

where B-(yt-yO)/(xt-xo) ih the slope of the line segment r .

It is easy to verify that the orthogonal transformation
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yields points P I and P' having the same x-coordinate. FurthermoreV.
0 t

y> it x>,and ytlyol if xtcx0 . Accordingly,

in Case I

(A3)PX(C 0 (r)}

(~(x~r)$(x-r) (0(~)-Cy~3 ,in Case III.

Indeed# the distn:ibution of (X'pYV) ia a standard bivariate no-rmaJ

distribuition, with correlation pw0. The half circle C1(W) is centered

at (x ',yt') and Cr)is centered1 at Nxjy"). C'onsidertCase 111-1

in which yt~; The probability of C,(r) in

(A.4) Pr(C 1(r)).=Pr~jx'-xt~jjryuY. I Y < y + (r 2 .(X'-x t) 2)1 /2

O (x) 0ytl+(r 2 m(x-x ) 2 )1/2)dx-

x t-r

tt

x -r
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2

(A.6) Pr(B(r)} = E Pr{Ci(r)1
£-0

x ÷ +r 2 2 1/2

x -rt

- *(y-(r 2 -(x-X)2 )'L/•) ax.

4.dx

Formula (A.6) applies also for Came I•, by sutstituting xt for

and Y t for Yt. in Case I we interohange y, and y in (A.6

We remark also that if y' <-4, the term 0yO-(r 2-l(-xt) 2 )1/2) can

be dropped from formula (AC). ,.

Finally, the probability that a random diok inteseotis s ha"

line segment P0PP is, in Cases ,M and . , ,

(A.7) HI NxoYo xtYt,)

1b xt+r 2_ 2 1/2 ,2 -2 1/2

o xf-r

1 1

0 -i
eo

The double-integral in (A.7) was evaluated by a double P-point

Gaussian integration (see Abramowitz and Stogun [11 pp.916].

S 'Attempts at 20-point integration yielded negligible difference.
%4
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AFPENDIX B. The Bivar.iate Normal Probab..lity of Triangles,

Consider the triangle 6PPI P2 , where Pi-lxi,yi) ,i-0,,2

"We make first an orthogonal transformation of the plane (x,y) so

that the side P-TIPI of the triangle 4POPIP2 is parallel to the

* x-axis and y'I-min(yj). The orthogonal matrix applied for this"a oi_-o, 2

purpose ix:

. V

(2.1) A# if X1OX2

- B 1

where 3,(" yl)/(x2 -xl). Xf x,,x2 we use the transformation

A -,if xO X1o 0.

"o 1. ) ..,

(B.2) "- - I 0-1 I, " * "

=• ~A I if XO > X1•"
o-1 0

Let (X',Y') - (XY)A'. The distribution of (x',y') is like that

of MX,Y).

a.., .

*. . . ... , •.. • .. .. '4.r ••" ,•.'....4 .. ' % ' .''•' ' .'--€ '' .- '• ,'... 'N 4*- 4-4* ,' ,' '.
4

!:.*
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Let TxloyoIxj,yjxj,yj) be the standard bivariate normal probability

(pw0) of the triangle APoIPjP' . Notice that YI',' and yo<Yj

lurthermore,T(xoyoxlylx 2,y 2) - x,1oXiyi,xiyi).

We distinguish between five cases.

Case 1: x ,K2-o It

Let y '-a 2+b2x' be the line connecting P; with and let y'a +b 1

be the line connecting P; with Pi. The probability of APoPlP2 is then

(B.3) T(x oyoXl 1 ,yx 2 ,y 2 ) -

W' <x_ , a +b 2x'_<' ) +

PrN~x~ a +b

O (y)C()'(x3

W0(x)(a2+b 2 x)dx- f (x)§(ai+bix) dx

The integral in (B.3) was evaluated numerically according to the

formulafN()abxd N(L4)
(B.4) 0 W l (a+bxl dx E 0. , (a+b,,i) [0 1(ti)-O (ti_l) I IL

where N-2Q, ti are the eadpoint of equal subinterval partition of"

(tot.) and i-(ti + 41+l)/2."

!'I-
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Case 2: x'=X

As in Case 1, let y-al+b x be the line connecting P with PI.

Then,

(B.5) T(xo ,Yo, xlylx 2 ,y2) -

P o(x; _ .X_ a 1 +bx'_< Y' <_ yj -

0xoI

Case 3: x > x0.

Let y-a 2 +b 2 x denote the line connecting P. with P 2 and

y-al+b x denote the line connecting P0 with PV. Then

(S.6) T(xo oIyxlylx 2 Fy2) O(l,)(§Cx1-)-O(x')]-

xI X12 ,
+ O() (a 2 +b2 x)dx - , *(x)9(a +b x)dx. y

0 0

Case 4: xi Xo

As before, let y-a 2 +b2 x designate the line connecting P0 with

P1, then

(B.7) T(x o,,y.xy 1 ,x 2 ,y 2 ) . ,(y.),,(x),)-,(x•).

~0

"f ý'(x) (a 2+b 2 x)dx.

x12

.1=.
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~.. * ** * -. * *

'I

211/2-
a(r) = o+r(,+b +b.. (r)

Yl23 2 2

+ (r) a - a3 + - (~ /2(~ /
3 2 b3- 2

+ 2,3. 1/21

2o(r) a2+r(L+b) 
11 2 +b 2 24(Z)

x- (r) 2xo-x ,()222

Sa+r(l+b ~2 12+b2 ()

Case 2: x w

x (r) mx +r

+ 1b2 1/2 +b r
y -r &3-r(1+3 )+ 3 0

x (r) x-x

2 1/2

, (r) - r /+b'"

y(r) - .,+r(-+b 2 1/2+b x (r)
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~a,..,

x (r) = b_- + b3b (l+b + (1+b)-a "im.2 b -b.. b -b 3(+4 +1b 12 13 2 3 2

y (r) a a2 +r(l+b•) 2/ 2+bx+(r)

X- +1 2x 2 -x, (r) ,

y-( a2r(1+b) '+b~x()..

Case 3: x >x
- 0 1

L:.1 - 3  r 2 1/2 21/2

÷ 0 (r) b b ((lZb •1l

o +1x 0

Xt (r) 2- m + 2r)
0 ....

1 ~2 1/.2 ~~~t

S(r) - a2+r(l+b ) 1 2 +b2 x (r) .

+ 23-1 r ( b2) 112+ 2lb 1/21';"

x2(r) b + 2 +bI +b2 ( [r(+b 2)/ ("," 1

2 1/2 + I -TO

Ya2 23 23 ((r+b)+(+ 3 ]at k
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F b

. Y2l(r) a 2 +r(l+b 2 1) +b2x(r)

case 24 xx

y or) a +r~l.+b 2 1/2 +b .X,(r)

x (r) xo-r

•or -~~ +b Xo (r)

xýlr) x 2x-+r)

0 0

y,0 (r) a-r (1+-4-b•') L+b lx[(ri-

x2 1/2 - xr)

*4

x +() mx +r

p 0
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+ 2,
+ 2 1L/2+bx L ý.

Xj(r) x x+r

y2 (r) a a2 +r (1-b2) +b2 x(r) "

Case 5 x o"2-

+ ar 3 -a r 2)1/2 1/2

+ (r). +3a ( l+bl 1+ I+b•)/]•

1"b3 1 mb33

+ 2 1/2 +
YO(r) a1-1r.+D,) +b1 x0 (r)

Xo () 2xo w xo+ ,,

Y, ( -) a"-r 1+b•) 1"/2+bx(r) ,

0 -o
x + r) a 1 -a 2( (1+b2)1/2 +(1+b2 1 /2~

y - a2+r(l+b2 1l/2 +b x+ (r)
y 1 ' a2  2' 2x1~

x-(r) - 2x-X +(r)

S(r) a 2 +('+b 2 )/2+b 2 x-(r) ,

+ 3-,2  r 2 1/2_ 1b 2 1/2'

2 23 23

- 2 1/2

()-a4+r (1+b) +b x-(r)
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ON 3SGHENTATION OF SIGNALS, TIMB SERIES, AND IMAGES

Stanley L. Solove

Department of Quantitative Methods
University of Illinois at ChIcago

ABSTRACT

Signals and time series often are not homogeneous but rather are

generated by mechanisms or processes with various phases. SiLlarlyt

Images are not homogeneoi'i but contain various objects. "Segmentation"

Is a prooess of attempting to recover automatically the phases or WT.

objects. A model tor representing such signals, time series, and Images

is discussed. Some spproaohes to estimation and seimentation 'in this

model are presented.

Key words and phrases: statistical pattern recognition,
classification; temporal correlation, spatial oerrelation; optimimation
by relaxation method.
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ON SEGMENTATION OF SIGNAL3, TIME SERIES, AIND IMAGES

Staknley L. So love

Department of Qusntitative Methods
College of Business Administration
University of Illinois at Chicago

1. Introduction

About ton years ago, Professor Jamies Osterburg, a colleaglue at the

University or X1linois at Chicago and an expert on physical evidence

(Osterburs and O'Heare 1949;1 Osterburg, 1968k 1962), consulted me In

regard to establishing probability estimates for partial fingerprints.

We have had a very Interesting collaboration which resulted In several ..

papers (Osterburg, Parthasarathy, Raghavan, and 3olove,, 1979;1 Solove,
1979, 1980, 1981a) and may, thanks to Professor Osterburg's continuing

efforts, result in changes in practices regarding the evaluation of

fingerprints as evIdenoe. for the present paper the point about

fingerprints to this When at professional meetings I would talk about

the subject, certain people (usually eleotrical engineers or computer

scientists) would tell as that what I was doing was "image processing."

The reason that our fingerprint work resembles Image processing Is

this. Osterburg treated fingerprint analysis by placing a grid of cells

over the print. One then notes the locations of any occurrences of the

"Galton details," the minutiae of the ridge lines, such as ridge endings

and forks. In numerical Image processing a real image is divided Into

cells ("pixels": picture elements) and one notes numerically what

occurs in each cell. The real image is expressed as a matrixz -- rows by

columna -- of cells, just as the TV screen has a matrix of dots which

are Illuminated with various colors and Intensities.
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Sclove. ON SEGMENTATION OF SIGNALS, TIME SERIES, AND IMAGES

2. Images

An Important aspet of image processing is image "segmentation,"

the location of objects in the image.

-Exaples. (1) A pioture of a house and yard is to be labeled using
- the lails, brick, glass, tree, grass, sky. (ii) An image is to be

labeled using the labels, tank, mud, tree, sky. (ill) A medical image
is to be labeled using the labels, tumer, or normal tissue.

Segmentation Involves labeling each pixel according to the name of

the object of which it is &,part, in turn Involves the grouping of

neighboring pixols. Since I had earlier worked on cluster analysis, the

grouping of observations (Solove 1977), it was natural to concentrate on
segmentation. The labeling process can be made explicit in a model

which states that at each pixel we observe the value of a random

variable X, but also along with X there is an unobservable variable, the

S..label. (I tend to treat the labels as parameters. Others treat them as

missing data, I.e., random variables.) In the context of this modell

--- • segmentation is merely estimation of the labeling parameters. r

The random variable I is often a vector of several measurements.

E ps. (i) A familiar example of a vector of measurements
"(thouWh 7would not be measured across a two-dimensional array) is -
blood pressure, which is a vector of the two measurements, systolic and
diastolic. (ii) In oolor television, X is a vector of three
measurements, the red level, green level, and blue level. (iLL) In
Landsat .4atellite data, there are four speotral channels, one in the
green/yellow visible range, a second in the red visible range, and the
other two In the near infrared range. (iv) For a black-and-white Image,
the eandom variable X which is simply a scalar consisting of a single
gray 'eveal meaurement, rathei' than a vector.

Images are two-dimensional; I decided first to consider a

one-dimensional version of the problem. An Image is a two-way series; a 4..

one-way series is a "time series." So I began this research by thinking 4.

about segmentation of time series.
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Solove: ON SEGMENTATION OF SIGNALS, TIME SERIES, AND IMAGES

"3. Time Series

The problem of segmentation considered here is: Given a time

series• • [Y(t), ta1,2, ... ,n),

partition rhe set of values oa t into subseries (segments, regimes) for

which the values x(t) are relatively homogeneous in some sense. The

* 8segments are assumed to fall into several classes.

Examples. (i) Segment a received uignl into background, target,
baokgri-unlaigain, another target, btc.e ii) Segment an BEG of a
sleeping persion into periods of deep sleep and restless or fitful sleep
(two classes of segment). (iLL) Segment an CCG into rhythmic and
"arhythmio periods (two classes of segment). (iv) Segment ahi oeonoamo
time series into periods of recession, recovery, and expansion (three,
classes of segment).

Next, several simulated time series will be shown. The first is

relatively smooth; the second, relatively rough or Jumpy. (They are

simulated tirst-order autoregressions with autoregression coefficients

equal to +.8 and -. 8, respeotively.)

Y(T)

- 2
32.500 + 2 4 7 3

- 7 01 5 2 6 9
- 6 3 3146 1 14

0 035 0 0
-1 89 9 5 9

30.000+ 2 5 89 2 8 68
314 t4 7
- 67 17
S5 0

27.500 +
-------------------------- ----- T

10 20 30 140 50

Smooth time series (simulated first-order 6

autoregression with coefficient +.8)
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Y(T)
S- 6

32.500 + 6
- 6 8 0 2 8 4 0 9
-2 2 4 7 0 4 0 8

- 7
3o.ooo 0 34 5 2 23 6

- 5 3 7 4 0
5- 1 8

- 3 6 9 7 9

27.500 + 9 1 3
- g9

Ruh 10 20 3040 s0
N: Rough time series (simulated tinrt-order

autoregression with coetfiolent -. 8)

The next series has alternating smooth and jumpy segent•.

"Y(T)

"- 1 15-- " 90 78 123"-,
,' - 4 7 9"30.000 + 12 6 8 2 70812

- 35 9 4
- 3 0 6 5 89 67 0

2 4 5 9
2700 •4 7 9 67

"27.500 + 6 01 4 8
-8 2304

- 5

"25.000 +
"" ÷----------- ----------- -----------.. T *

"10 20 30 40 50

Simulated time series with three segments
(smooth, then rough, then smooth)

It is a simulated series, with throe segmenls. laoh segment Is a

tirst-order autoregressLon. For t x 1 to 20 the ooefLioient is +.8; for
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Solove: ON SEGMENTATION OF SIGNALS, TIME SERIES, AND IMAGE.

t a 21 to 30 the ooef'fioient Ib -. 8; then for t a 31 to 50 the

coefficient is again +.8. In actual data analysis one tiould not know

the segments but would have to find then and estimate their parameters.

Now let us consider a real exauple, rather than simulated data. The

graph below In quarterly GiP (Gross National Product) for 55 quarters,

starting with the first quarter of 19460.

LOG GN ,
2.700 + 45

123
0 34567890

- 89012
01 67

2.550 ÷ 789 2345- 123456
" 9~0

- 123 78
2.400 + 890 456

- 67
- 345
- 12
-- - - --- ... .. . -+ . . . . ....... ------------------- ....----........ T

10 20 30 40 s0 60

Plot of Y(T), where Y(T) is log (base ten) quarterly ONP in
billions of current (unadjusted) dollars. Tu1 Is 1946-1, T,2
is 1946-2, ... , T-5 is 1947-1, *to. (N4,5)

Here is a second difference of the log quarterly GNP. Do you see

anything particularly Interesting?

tI'l a.*l
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1O00D1DDM
- 2
-43.500 + 35

3 12 78

-3 3 0 3 9
- 56 45 4 0 6

0.000 + 4 6 2 9 5
- 1 7 9 5 -781

1 0 6 6.3 "
-2 7 0 4 6 3 4 0

-3.500o 89 8 7 'r•f

+----------4------------------

10 20 30 40 50

Plot of mixed second differenoc of log ONP: N,
Vertical scale, labeled '1000DID4' is Z(T) whereY
Z(T) a 1000(Y -U(T)-T-.1)) ( 4 1Y(T-5))i and
Y(T) a log GNP (base 10); Tl is 1947-2, Ta2 it
1947-3, ... , Ta9 is 1949-2, e*to. (NaSO)

A first difference corresponds to a velocity. The difference
y(t) - y1(-) • dlt), #

say, Is Cy(t) - ywh-icl/[t-(t-1l], which is the change in y over the

one time unit from time t-1 to time t. A secoond difference
d ) - t 1)ld

which in terms of an original series of y's Is
[[y(t)-yl(-ll]- [y(t-ll-y(t-2)]},)0

Is proportional to the change In velooity across the Indicated time

periods and hence Is essentially an acceleration. Thus a second
4 ft I D

difference Is perhaps a natural transform to analyze. (Note, however, V,..

that the second diffurenae used here Is a mixed second difference,

namely, the ordinary difference of the lag-four difference

y(t)-y(t-4).] The seoond-difference series appears level. What I think

Is particularly Interesting Is that the acceleration of the economy due

It*
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Solove: ON SEGMENTATION OF SIGNALS, TIME SERIES, AND IMAGES

to the Korean conflict of the 1950's is readily apparent. (T 12 is

1950-1, T a 13 is 1950-2, eta.) I think that the need for segmentation

is olearly indicated. One needs to give some sort of special treatment

to those four exceedingly high values.

An alternative approach to such observations is to identify them as

"outliers." However, "outlier" connotes spuriousness. If outlying

observations are non-spurious or are associated with a recurring cause,

perhaps they should not then be termed "outliers." They should be

modeled.

In, other cases, where, e.g., equipment failure is suspected, one
truly wants to look for outliers. Here, too, segmentation can be

useful.

De Alba and Zartman (1979) analyzed radiobelemetrio measurements of
cows' temperatures, in order to looate the periods of high estrus, with

a view toward more optimally timed breeding and efficient milk

production. A technique of de Alba and Van Rymin (1979, 1980) was

used. In the de Alba-Zartman report the analysis of the temperatures of

one cow over 133 days is discussed in detail. Eleven observations were

detected as coming from distributions with means shifted relative to the

rest of the observations. Inspection of the data showed that some of

these temperatures were high and some extremely low. It is concluded K
that the high temperature readings correspond to times of active estrus. a.

(Perhaps the low readings correspond to instrument failure and hense are

true "outliers" in that sense.) S

Here, as In de Alba and Zartman (1979), the raw data were

pre-processed by differenoing. Model-seleotion oriteria (see below)

2a7
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Sclove: ON SEGMENTATION OF SIGNALS, TIME SERIES, AND IMAGES

estimated the number, k, of classes of segment as two, but k 3 and

k a 6 soared almost as well. Since the numbers analyzed were

differences, it is perhaps especially interesting to consider three

classes, particularly since the segmentation yielded one olass for

positive differences, one for negative differences, and one for

differences olnse to mero. The results obtained are similar to those I,

obtained by do Alba and Zartman. They identified eleven observations as

"outliers;" 7 of these were high and 4 were low. The segmentation

algorithm run with three classes of segment identified ii observations as '

high; these were among the 7 identified by do Alba and Zartman. Use of

six classes provided even closer agreement to the do Alba-Zartman

results. The upper two of the six classes captured 6 of the 7 high 60!", r

observations; the 4 low observations were located by the lowest class.

(In disoussion after the paper Professor Parmen mentioned that at

Texas A&M University also they had dealt with the analysis of bovine

eatrus and found by spectral analysis that a filtered Poisson

process -- see, e.g., Parmen (1962) -- provided a good fit to the data.)

Now, having discussed some examples, let me be a little more
specific about the model and the algorithm. [More formal presentations

are found in Solove (1983a,o,d).] The elements of the sepentation

model are the olass-oonditional time series or distributions, with their

parameters; the labels; and the transition probabilities between the

labels. Correspondingly, the algorithm alternates between estimation of

the distributional parameters, estimation of the labels, and estimation

of the transition probabilities. That is, given a tentative labeling,
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Solove: ON SEGMENTATION OF SIGNALS, TIME SERIES, AND IMAGES

one can obtain tentabive estimates of the parameters of the

olass-oondibional distributions and at the transition probabilities.

One then relabels the observations, using these updated parameter

estimates. The relabeling is done as follows: If x(t) (i.e., if time 4
period t) is currently labeled as class o, then x(t+1) Is labeled as

that class d for which the produot

p(o to d)f(x(t+l)Id)

ft.. mv

Is maximal, where p(o to d) denotes the 'current estimate of the

probability of a transition from o to d and f(x Id) denotes the

tentatively estimated elass-d probability density, evaluated at x.

This makes sense because, under the assumptions ot the model, the

likelihood Is the produot of these terms.

To Illustrate the algorith, leat us consider a short) , ar tifcial

time series.

t 1 1 234 5 6 789101112

x(t): 1 13 1 212 6 71 11

Suppose It Is specified that there are two classes and that the

olass-conditional distributions are exponential. Suppose the Initial

guesses of the parameters are equal prior probabilities for the two

classes and means of 2 and 3. Then Initially the class-conditional

densities are taken as f(xla) .(1/2)exp(.x/2) and f(xlb)

tt(1/3)exp(-xen3) e In the first iteration, using equal prior

probabilities ot .5, one labels x as having come from Class A It

.5t(xla) >' .5t(xlb), which simplifies to x <2.43. This gives the

following estimated labels at the end of the first Iteration.
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to: 1 2 3 4 5 6 7 8 9 10 CI 12

x(t): 1 1 3 1 2 1 2 b 7 1 1 1 I
label: aa b a a a b b a a a

Now the Lransition probabilitios can be estimated from the sequence ot

estimated labels. The 11 transitions are: a to a, a to b, b to a, j

a to a, a to .a a to a, a to b, b to b, b to a, a to at a. Thse

give the following estimates of the transition probabilities.

patoa)a3/4 p(a ta b) a 1/4

p(b to a) a 2/3 p(b to b) 1/3

The class means are estimated as follows (but see Section 62 Plans tor

Further Research, for a discussion of this point).

ean of a'si (0+.1 + 1 + 2 + 1 + 2+ 1 + 1+ 1)/g9 11/93 1.22

Mean of b'st (3 + 6 +7)/3 a 16/3 a 5.33

Now the condition for labeling the current x as "a", given that the

preceding x has been labeled as "a", Is

p(a to b)t(xlb) < p(a to a)f(xla),
or

(1/4)(1/5o33)exp(-x/5.33) < (3/4)11/1.22)exp(-x/1.22),

which simplities to x < 4.075. Similarli, the condition for labeling x

as "a", given that the preceding observation has been labeled as "b", Is

p(b to b)t(xlb) < p(b to a)t(xla), which simplifies to x < 1.24.

These second-iteration classification rules change only the label oa

x(3) from "b" to "a"ll

At this point let me mention a possible Improvement to the

algorithm. At the relabeling stage, where the labels are re-estimated,

based on tentative parameter estimates and transition probabilities, the

% 
1
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problem is one of estimating a finite sequence, given the transition

probabilities. The dynamic programing approach to this problem is •.6;

known as the Viterbi algorithm. [Forney (1971) is perhaps the most

readable reterenoe on this; the referenoes Viterbi (1967, 1971) and

Vi.terbi and Odenwalder (1969) are also given.] This approach will be

applied in the ruture. The present approach is perhaps somewhat simpler

but has its advantages. It adapts Itself to operation in the purely

seqven~tal mode, and it is relatively easy to program.

An algorithm, such as the present one, which alternates between

optimizing different sets of variables, is known as a "relaxation" p.4 6'',

method (Southwell 1940, 1946; Ortega and Rheinboldt 1970). In the

present case the different sets of variables are different parameters,

namely, the distributional parameters, the transition probabilities, and

the labels. "

We note in passing that the EM algorithm -- see Dempster, Laird and

Rubin (1977) -- is such a relaxation method, where at the "E" step the

estimation is by expeotatLon and at the I'M" step the estimation is by

maximization. "

An alternative approach to the presently-implemented relaxation

method would involve equating paztial derivatives of the likelihood

function to zero and solving the resulting equat•e•i s. It is clear that

results analogous to those of Wolfe (1970) will be obtained by this

approach, with transition probabilities replhoino his mixture

probabilities. In any case, the resulting equations have to be solved .:.*i

by an iterative, numerical method, and it is not clear whether it would

be any better than the the presently-implemented relaxation method.
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4. Imags-segmentation experiments

Conventional approaches to segmentation (see, e.g., Ahuja and

Rosenfeld (1982) for a survey o1 image models) include ordinary

clustering; edge detectors suoh as the two-dimensional filters of

Irwin Sobel or Judy Prewitt; and a pixel-labeling method that has

(perhaps inaccurately) been called a relaxation method. This involves

updating the current estimate of

Pr(label of t is oldata),

the (conditional) probability that the true label of pixel t is class a,

given the datal by an updated version of these estimated probabilities,

where the updating takes into account the current labels of neighboring

pixels. This in done by means of "compatibility coeffioients,"

measuring the consistency of label c for pixel t with the ourrent

labelings of neighboring pixels. (See, e.g., Eklundh, Yamamoto and

Rosenfeld 1980.) More precisely, to estimate Pr(label of t Is odata),

one moves roam stage s-1 to stage s u follows. Let

Pr(label of t is aedata;s)

be the s-th stage estimate. Then

Pr(label of t is oldata;s) .

Pr(label of t Is o)ldata;s-1) C(t,o;s-1)/C,

where C is a normalizing factor equal to the sum of the denominators

in this expression and C(tc;s-1) is the compatibility ooeffiolenti

e.g., C(t,o;s-1) could be related to estimated transition probabilities

for the labels or taken as the proportion of the neighbors of pixel t

which are labeled a at stage s-1. A problem with this relaxation

,*.m.:.aI
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method, noted by various researchers, Is that the image gets good, then

"fades," so there is a problem of knowing when to stop the iteratlon.

This approach is intuitively attractive. The approach I use seems

to have the same intuitive attractiont plus the advantage of being

embedded in a Markov model which gives a likelihood function, putting

the problem in the context oa parameter estimation In a probability

model and making performance evaluation possible. (For instance, one

can co~nsider asking questions such as, "What it we worked with

first-order neighbors and the model were really second-order?" I'm not

saying that such questions are easy to answer; I'm merely stating that

it Is only in the presenoe of a model that their formulation is even

possible.)

The idea of the model in the case of Images is the name as tor time

serios, but the transition matrix is more complicated. The transition

probabilities are, even In the simplest, first-order, one-sided case

(where one conditions only on pixels to the north and west of the given

pixel, rather than those to the north, west, south, and east), functions

p((od) to e) oa three arguments, where this represents the probability

of a transition to class a in pixel t, given that the pixel to the north

of t is class o and the pixel to the west of t is class d. [The Markov

approach used here is not unrelated to that presented by Professor

Grenander at this conference (Orenander 1985; see also Grenander

1983).] The segmentation algorithm discussed In the present paper, like

the "relaxation" method using compatibility coefficients, also has the -I. m,*

property that each iteration Is not necessarily better than the .".:0

proceding, but there is a likelihood value associated with each
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i 4

iteration, and these values can be used to pick out the beat iteration.

Here are results or some experiments with the segmentation

algorithm.

The Fisher iris data consist of 4 variables observed for each of

150 Irises, 50 itn each of three species. In order to form an

experimental Image, these 150 were arranged Into 15 rows of 10, the ..4w,

first 5 rows being species 1, rows 6-10 being species 2, and rows 11-15

being species 3. Thus the true segmentation looks like this.

111 1 11 11 11 •,,.,.4

1111111111

1111 111111
2222222222
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 •.•,
2 2 2 2 2 2 2 2 2 2
2222222222
22222222223333333333
3333333333 43333333333 •
3333333333
3333333333

The measurements on flowers 50, 100, and 150 were used as initial

estimates for the distributional parameters, namely, means of

multivariate normal distributions. A common covarianoe matrix was -.,

assumed. (Actually, statistical tests and model-selection criteria

suggest that different oovariance matrices should be used; my algorithms

do allow for this.) The initial estimate of the common covariance was

taken to be proportional to the identity matrix. Equal prior
4•,

probabilities for the three classes were assumed as initial estimates.

After only three iterations, no label ohanged. The segmentation
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obtained was as follows. 4.

1111111111
1111111111

11111 11111
1111111111

2323232323
22222222223222222222 2

2222222222
2222222222
3333333333
3333333333
3333333333
3333333333•i"
3 3 3 3 3 3 3 3 3 3 ,!

Experiments were run with ditterent oonftigurabLons of these data.

Below is the true conftiuration for Experiment 1. The four-by-four

block of 2's in the middle can be bhoughb of as a target to be located.

1111111111
1111111111
11112221111
1112222111 •

3332222333 ,
3332222333 3 3 3
33333333333333333333
3333333333 ,a.

The segmentation produced was as follows.

1111111111

S1111111111 3
11132321111113222111
3333332333

3332222333 323322223333
3333333333
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The following was the true configuration for Experiment 2. Note

* ,the small. "target" of four 21s.S

10-

3333333333

3333333333

The segmentation obtained was as follows.

1 1 111 1 1 111
1 1 31 1 1111 32
11111111113 3
111 11111 33
11113211113 33
3 33 3323 32333

Note the algorithm worked reasonably well in detecting even a smallt

target, even with the usae initial (equal) estimates of prior

probabilities, quite different from the true probabilities of .4I8, .04,

.48 for the three classes. Thus perhaps the algorithm will not have to

be well "tuned" in order to work well.VI

Note there are problems at the northwest edges, due to the way the

algorithm Is set up. In future software development I might program a

procedure analogous to Box and Jenkins' back-forecasting ("backcasting")

to take care of this. Then, after a first segmentation, the data would

*be read through in reverse order, so that northwest pixels become Q

southeast pixels, easy to label correctly.

44834
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5. Model-selection criteria

A question of obvious importance is that of how many olesnes of

segment to use, that is, what should be the value of the parameter k?

Maximum likelihood estiu. ktion alone oannot provide an anoswer, because itIp.'.k

is model-conditional; that is, maximum likelihood applies to the problem

of estimating the other parametern, for a fixed value of k. It does not

apply to the problem of estimating k because the likelihood itself

changes as k does. An approanh to the problem of estimation of k is

v provided by model-selection oriteola, such as Akaikels, Schwarz' and

Kashyap's. These orite,'ia add a penalty for using extra parameters to •

the negative log-likelihood function. Thus a Small score is a good

score on these criteria. Akaike's criterion is based on a heuristic

estimate oa the cross-entropy of the true model and the model with k

classes. (See Parsen, 1982.) Sohwarz' criterion, perhaps more

convincing, is based on a Bayesian approach. Kashyap obtains Schwarz'

criterion by a relatively simple expansion, then takes this expansion a

term further to obtain another criterion, which I call Kashyap's

criterion. The additional term seems to be particularly meaningful.

These model-selection criteria take the form

-2 log L(k) + a(n)m(k) + b(k),

where "log" here denotes the natural (base-e) logarithm, and

L(k) - likelihood under the k-th model, maximized
with respect to the parameters,

a(n) : 2, for all n, b(k) = 0, for Akaike's criterion,

a(n) - log n, b(k) = 0, for Schwarz' criterion,

a(n) '. log n, b(k) x log[det B(k), for Kashyap's criterion,

det - determinant,
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. ,•,(k) - matrlx seoond rtlal Ue,'Iva Ives orwith ruspeot to the parlmetors, i l 'I
(The uthesatio•l expectation of B(k) Is the Flshar inforaatlon ••

• atrix.) The optimal k Is that value which minimizes the oriterlon.

Akatke's oriterlon generally ohoo•..ss a hl•har value of k (lore •,•?•
b ......

paraeeters) than do the othe•< •inoe for n lreate• than 8, lo• li ts -,,'• •,,

greater than 2, 8ohwarz' oriterlon will ohoos• e, value of k no larpr ", ,',•',

t.•an t•at onosen by Akaik.'., •'or n sr.•t•,r ,•n S. •i•,•

6. Plans *'or further researoh [•.•i,•;•

Several items for future research have already b•en untioned, ••:*

I ....

lnoludlng progranlng of' hackoasttn• and use of the Vtterbl alprtth•. " "•'•:

• •,•,•Some other plans for additional research w•ll be un•ioned now. !•

First there is the matter o£ improved estl•atior• of •ht distributional
f. 'n•

parameters. For purposes of dlsousslon foods on tho exuple of ',•i•'•:'

se•entins a time series into two olasses, i.e., labelinl each •'•
l" # ¢i•'-I

.'•,..,,•.'i
observation as an "a" or a "b." There is a trlmoatlon rea,,ltini from •:•:•'

the presen• implementa•lon of t, he aliorlt•. Nuely, only those•:,•,•-_::,

observations labeled "a" will be used in updatlnI the ourr, int estimate •..:•,

•' the mean o1' Class A. But these observations are a trunoakeA eaiple •-•'

•._•_from Distribution A• and the algorithm does nor, •rea•, the• u •oh. (A• •:",•!P,
,,,, %, ,,+,; ,

the Conference, Professor Tukey very kindly •ousht ae out the day after •,'.;';':'•
my p•eaentatton to point this out to let and also to rilrk on the "" "-•'
liaitatlons of the unidireot!nnsl •pproaoh o• the algorithm; ale below.) "•

Rather •tlan deal, with the trunoatlon •r so, I •ad planned in the next¢•-'•'::•;i::

-- •.,€:.,
stase of the work to Iodify the estleetoes by dolnl them Bayestanly, "•

°•' I
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e.g., estimate the mean of Group A as N/D, where ."

N = (W) Pr(alx(i)) + x(2) Pr(alx(2)) + ... + x(,') Pr(alx(n))

and :
D a [Pr(alx(1)) + Pr(alx(2)) + ... + Pr(alx(n))] ,,'.

(In this expression, Pr(alx) can be replaced by Pr(xla) since Pr(alx)

f(xla)Pr(a)/f(x) and Pr(a)/f(x) is a common factor which will cancel

out.) In this estimate, all the observations play a role, whether

labeled as "a" or "b," so that at least some of the bias will be removed

by allowing the larger "b" observations to enter.

I obtain the likelihood function by a one-aided approach,

conditioning any given pixel on the results in the pixels to its north

and west. A two-sided, full neighborhood approach seems preferable to a
* I~

unidirectional one. The unidirectional approach is a device for writing

down the likelihood, but this does not mean one has to be wedded to that

approach in the iterative updating. That is, the parameters can be

estimated with a full neighborhood approach.

AMother bit of further research Is to calculate Kashyap's criterion

for various clustering and segmentation models. Also, so far the

method, algorithm and software have been developed only for the case

where the observations within a class are independent (and Gaussian). A

next step will be autoregression within classes. This is of obvious

importance in time series, and in the context of images, it can be used -. .

to model textures. Still another generalization is to allow some forms

of time or state dependency in the transition probabilities.
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RECENT RESEARCH IN EXPERIMENTAI, DESIGN FOR QUALITY IMLPROVEMENT
WITH APPLICATIONS TO LOGISTICS

", George S. P. Box

L.OGIESTICS AND QUALITY CONTROL

A traditional philosophy of quality control has been to "inspect bad
quality out" and indeed there are famous military standards that employ this
philosophy. W. Edwards Deming (1982) has likened this to making toast
according to the recipe "you burn it and I'll scrape it", and has urged the
alternative philosophy of assuring that good quality has been built in to the
product in the first place. In particular he attributes to the latter
philosophy the success of Japanese industry in producing high quality products
at low cost. A typical example of the dramatic consequences that have been
attributed to these differences of approach are the air-conditioner defect
rates shown in Table I and quoted by David Garvin (1983).

S(Zn the factory: Assembly line defects per 100 units)

American Japanese
Total 63.S 0095
Leaks .. ,,,,,,,,,,,,,,,,,,, 3.1 0.12

. lectxical ....... ,..,.....,..... 3.3 0012

* (Zn the fields Service call rate Vor 100 units under
first year warranty coverage)

Tmerican Japanese
T1tal .0.5 0.6

Compressors . ................. 1.0 0.05

Thermostats ................... 1.4 0.002
ran motors ..................... 0.5 0.028

TABLE I. Defect rates in US and Japanese air conditioners

similar comparisons have been made between defect rates in American and
Japanese automobiles.

The same United States industry that makes air conditioners and motor
vehicles also makes military hardware. It seems clear therefore that a major
change in quality philosophy could produce a major improvement in the
reliability of the AMmy's equipment. The philosophy of "building quality in"
employs a policy of never ending quality improvement which may be typified in
terms of the traditional statistical model

Sponsored by the United States Army under Contract No, DAAG29-80-C-0041.
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f- Q 1) + e,.,.

where y is a quality characteristic believed to depend on a set of variables
denoted by yI whose identity is known, and e is the difference y " f(z 1 )
usually referred to as error* (Such, "errors" are often somewhat arbitrarily
imbued by the theoretician with properties of randomness, normality
independence and homoscedasticity). In reality e is a function of a )o a

number of additional variables, x say, which affect the system but whose
identity is usually unknown. In general, quality improvement is achieved by

transferring elements of the unknown factor vector into the known factor
vector as indicated below -

y- + s(2)

known unknown

The effect of such transfer is two-fold

(M) to reveal effects of previously unknown factors which may then be
adjusted to levels yielding higher quality and/or used to control the
process*

(Wi) to remove variation previously caused by haphazard changes in these
factors,

some of the statistical techniques which contribute to this transfer are
quality control chatting (including Shewhart, Cusum, Pareto and Fishbone

charts) and designed experimentation on line and n•I' line (employing in
different and a1 .-.-.: iats contexts factorial, frautional factorial and
orthogonal array designs, evolutionary operation and response surface
methods),

2e SCIENTIFIC METHOD AND QUALITY

Charting and experimentation are examples respectively cf paisive

surveillance and active intervention both of which are important elements in
scientific method which it is desirable to consider further,

Humans differ from other animals most remarkably in their ability to
learn. It is clear that although throughout the history of mankind
technological learning hes taken place, until three or four hundred year* ago
change occurred very slowly. One zeason for this was that in order to learn
something - for example, how to make fire or champagne - two rare events
needed to coincides (a) an informative event had to occur, and Cb) a pevuon
able to draw logical conclusions and to act on them had to be aware of that
informative event.

Passive surveillance is a way of increasing the probability that the rare
informative event will be constructively taken note of and is exemplified by
quality charting methods. Thus a Shewhart chart is a means to ensure that
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possibly informative events are brought to the attention of those ,oho may he

able to discover in them an "assignable cause" (Shewhart 1931) and act
approp)riately.

Active intervention by experimentation aims, in addition, to increase the
probability of an informative event actually occurring. A designed experintent •.,
conducted by a qualified erperimenter can dramatically increase the

probability of learning because it increases simultaneously the probability of
an informative event occurring and also the probability of the event being
constructively witnessed. necently there has been much use of experimental
design in Japanese industry particularly by Genichi Taguchi (Taguchi and Wu
(1980)) and his followers. in off-line experimentation he has in particular
emphasized the use of highly fractionated designs and orthogonal arrays and
the minimization of variance.sL

In the remainder of this paper we briefly outline sonme recent research on
the use of experimental design in the improvement of quality.

3. USE OF SCREENING DESIGNS TO IMPROVE QUALITY

Table 2 shows in summary a highly fractionated two-level factorial design
employed as a screening design in an off-line welding experiment performed by
the National Railway Corporation of Japan (Taguchi and Wu, 1980). In the
column to the right of the table is shown the observed tensile strength of the %,- ,j
weld, one of several quality characteristics measured.

The design wvx 'hosen on the assumption. 4hao in addition to main effects
only the two-factox interactions AC, AG, AH, and GH were expected to be
present. On that supposition, all nine main effects and the four selected
two-factor interactions can be separately estimated by appropriate orthogonal
contrasts, the two remaining contrasts corresponding to the columns labelled

Sand 2 measure only experimental error. Below the table are shown the V
grand average, the fifteen effect contrasts, and the effects plotted on a dot
diagram. When the effects are plotted on normal probability paper, thirteen
of them plot roughly as a straight line but the remaining two, corresponding
to the main effects for factors B and C, fall markedly off the line,
suggesting that over the ranges studied, only factors B and C affect
tensile location by amounts not readily attributed to noise.

"if this conjecture is true, then, at least app oximately# the sixteen I:..
runs could be regarded as four replications of a 2" factorial design in
factors B and C only. However, when the results are plotted in Figure 1
so ag to reflect this, inspection suggests the existence of a dramatic effect
of a different kind - when factor C is at its plus level the spread of the

L%

To facilitate later discussion we have set out the design and labelled the
levels somewhat differently from Taguchi.

294 •,

"14.d , ,., .. .. Ik,,, , . ... . . ... -. • . .. , • I..' .,"If, ."1. - , ,'....'',. , •'• '•,.,.• , , . . ., ,% . , .,, .,, ,,, ,,,•;,,•,_'_,,•,-,,...., ,



V V; 8 C; U; 4 C;, 4 8 4 z •g•g••.'. .

In *. + + + +. + + + 6.4 1 4 '..",

4%N P O N '. i 'o .4UU

041 04

04 qw + + + + + + +I + *"''•' %

,4

Uu• + ++ + + + +, + +,

iV.,- Wo + + +

+" + + I 4 + + ' + I + +• mW'-

m M + + + + + +

-W4odet 4. ,,

m~ e+++gg+ eeoc~.
"S+''+÷ ''+ ''+ + O © "--•'

44

44 "'

•'I UI "0

" l I+ l ,i'+ + + + +.I

* W44

In

to 1+ + II+ + I++I ++*II++
1'.

...-. ,.

." +.' , ,. .. " ""I"+..

+. + .+ +. , + + 4.

IP. 9-Vý Io W. 0

295,

a 4.l i~i~ 1+1+ 414r



data appears much larger* than when it is at its minus level. Thus, in
addition to detecting shifts in location due to B and C, the experiment
may also have detected what we will call a dispersion effect, due to C. The
example raises the general possibility of analyzing unreplicated designs for '
dispersion effects as well as for the more usual location effects.

W- '

K40 42 44 46 40 42 44 46

C

iII

1

40 42 44 46 40 42 44 46
4' T4.
"* p

Drying Period a

"2
"figure 1. Tensile data as four replicates of a 22 factorial

"design in factors B and C only.

.Data of this kind might be accounted for by the effect of one or more R.

variables other than B that affected tensile strength only at the "plus
level" of C (only when the alternative material was used). Analysis of the
eight runs made at the plus level of C does not support this possibility,
however.*t.
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4. RATIONALES FOR USING SCREENING DESIGNS

Before proceeding we need to consider the question, "In what situations
are screening designs, such as highly fractionated factorials, useful?"

4.1. Effect Sparsity

A tommon indastrial problem is to find from a rather large number of
factors those few that are responsible for large effects. The idea is
comparable to that which motivates the use in quality control studies of the
"Pareto diagram." (See, for example, Ishikawa (1976)). The situation is
approximated by postulating that only a small proportion of effects will be
"lactive"_ and the rest "inert". We call this the postulate of effect
sparsity. For studying such situations, higly fractionated designs and other
orthogonal arrays (Finney (1945), Plackett and Burman (1946), Rao (1947),
Taguchi and Wu (1980)) which can screen moderately large numbers of variables
in rather few runs are of great interest. Two main rationalizations have been
suggested for the use of these designs: both ideas rely on the postulate of
effect sparsity but in somewhat different ways.

4.2. Rationale Based on Prior Selection of Important Interactions

It is argued (see for example Davies (1954)) that in some circumstances
physical knowledge of the process will make only a-few interactions likely and-
that the remainder may be assumed negligible. For example, in the welding
experiment described above there were 36 possible two-factor interactions
between the nine factors, but only four were regarded as likely, leaving 32
such interactions asumed negligible. The difficulty with this idea is tJat
in many applications the picking out of a few "likely" interactioas is
difficult if not impossible. Indeed the investigator might justifiably
protest, thai, in the circumstance where an experiment is needed to determine
which first order (main) effects are important, it is illogical that he be
expected to guess in advance which effects of second order (interactions) are .,

important.

4.3. Projective Rationale Factor Sparsity

A somewhat different notion is that of factor sparsity. Thus suppose
that, of the k factors considered, only a small subset of unknown size d,"
whose identitX is however unknown, will be active in providing main effects
and interactions within that subset. Arguing as in Box and Hunter (1961) a
two-level design enabling us to study such a system is a fraction of b

resolution R - d + 1 (or in the terminology of Rao (1947) an array of
strength d) which ~roduces complete factorials (possibly replicated) in
every one of the Cd) spaces of d a R - 1 dimensions. For example, we have
seen that on the assumption that only factors B and C are important, the
welding design could be regarded as four replicates of a 22 factorial in
just those two factors. But because the design im of resolution R - 3 the
same would have been true for any of the 36 choices of two out of the nine
factors tested. Thus the design would be appropriate if it were believed that
not more than two of the factors were likely to be "active"*
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Columns 1 2 3 4 S 6 7 8 9 10 11 12 13 14 1S

215-11

(c) 25I . " -

V

(d) 24

TABLE 3. Some alternative uses of the orthogonal array of Table 2.

For further illustration we consider again the mixtesn-run orthogonal
array of Table 2 and, adopting a roman subscript to denote the resolution R
of the design, we indicate in Table 3 various ways in which that array might
be used. It may be shown that

(a) If we associated the fifteen qontast columns of the design with
fifteen factors# we would generate a 2 design providing four-fold
replication of 2 factorials in every one of the 105 two-dimensional
projections.

Mb if we associated only colwumrn~l 2p 4# 7#.8, 11, 13, and 14 with
eight factors we would agenerate a 20-" design providing two-fold
replication of 23 factorials in every one of the 56 thxes-dimensional
projections.

(a) If we aeuitp•d only columns 1, 2, 4,. , and 15 with five factors
we would generate a 2V' design providing a 24 factorial in every one of OW
the four-dimensional projections.

(d) if we associated only columns 1, 2# 4v and 9 with four factors we
would obtain the complete 2" design from which this orthogonal array was in
fact generated.

Designs (a), (b) and (c) would thus be appropriate for situations where we
believld respectively that not more than 2, 3, or 4 factors would be
active a Notice that intermediate values of k could be accommodated by
suitably omitting certain columns. Thus the welding design is a 29-5
agjangement which can be obtained by omitting 6 columns from the compleete
2 1 *.Notice finally that for intermediate designs we can take advantage of
boU rationales by arranging# an was done for the welding design, that
Farticular interactions are isolated.

The designs give partial coverage for a larger number of factors, for example
(Box and Hunter (1961)) 56 of the 70 four-dimensional projections of the 28-4
yield a full factorial in four variables.
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A discussion of the iterative model building process by Box and Jenkins .
(1970) characterized three steps in the iterative data analysis cycle
indicated below

identification fitting -. diagnostic checking-

Most of the presont paper is concerned with model identification - the search
for a model worthy to be formally entertained and fitted by an efficient

procedure such as maximum likelihood. The situation we now address concerns
the analysis of fractional designs such as the welding design in the above
context when only a few of the factors are likely to have effects but these
may include dispersion effects as well as location effects.

4

S. DXSPERSION EFFECTS

We again use the design of Table 2 for illustration. There are 18 runs " ,
from which 16 quantities -- the average and 15 affect contrasts -- have been ,
calculated. Now if we were also interested in possible dispersion effects we
could also calculate 15 varian e ratios. For example, in column 1 we can

compute the sample variance Sa. for those observatilns associnteu with a
minus sign and compare it with the sample variance si+ for observations
associated with a plus sign to provide the ratio F1 " s../sa+. IC this is
done for the welding data we obtain values for lntr given in Figure 2(a).
it will be recalled that in the earlier analysis a farge dinqsrsfoh effact !
associated with factor C (column 15) was found,,.but in Figure 2%a) the
effect for factia.- C is not especially extreme, instead the dispersion efhcL
for factor D (column 1) stands out from all the rest. This misleading
indication occurs because we have not so far taken account of the aliasinq of
location and dispersion effects. Since sixteen linearly independunt location
effects have already been calculated for the original data, calculated
dispersion effects must be functions of these. Recently (box anW Meyer i•84u)
a general theory of location-dispersion aliAsing has been obtained for
factorials and fractional factorials at two levels. For illustration, in this

particular example it turns out that the following identity exLsts for the
dispersion effect F 0, that in the , ratio associated with factor 0 and
hence for column I ol the design.

2 2 AA2 AA2 2 2 A A

(2-3) +(4-5) +(6-7) +(8-9E +(10-11) '4(12-13) +(14-;S)'
'1 (243)24(445 )24('47)24(54q)24(¶O4;1)24.¶+¶)2+(^41) 1

A A It a

Now (see Table 2) 14 , 8 - 2.15 and 1S a C a 3.10 axe the two largest
location effects, standing out from all the others. The extreme value of F1
associated with an apparent dispersion effect of factor D(1) is largely

!,5 55.

'In this figure familiar normal theory significance levels are also shown.

Obviously the necessary assumptions are not satisfied in this case, but these.OX
percentages provide a rough indication of magnitude.
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accounted for by the squared sum and squared difference of the location
effects B and C which appear respectively as the last terms in the
denominator and numerator of equation (1). A natural way to proceed is to
compute variances from the residuals obtained after eliminating large location
effects. After such elimination the alias relations of equation (1) remain
the same except that location effects from eliminated variables drop out.
That is zeros are substituted for eliminated variables. Variance analysis for
the residuals after eliminating effects of a and C are shown in Figure
2(b). The dispersion effect associated with C (factor 15) is now correctly

indicated as extreme. It is shown in the paper referenced above how, more
generally, under circumstances of effect sparsity a location-dispersion model
may be correctly identified when a few effects of both kinds are present.

6. ANALYSIS OF UNREPLICATED FRACTIONAL DESIGNS

Another important problem in the analysis of unreplicated fractional
designs and other orthogonal arrays concerns the picking out of "active"
factors. A serious difficulty is that with unreplicated fractional desLgns no
simple estimate of the experimental error variance against which to judge the
effects is available.

in one valuable procedure due to Cuthbert Daniel (19590 1976) effects are
plotted on Normal probabiliti.japer. For illustration Table 4 shows the

calculated effects from a 21V design used in an experiment on injection
molding (Box, Hunter and Hunter, 1978, p. 399). These effects are plotted on
normal probability paper in Figure 3.

T1 - -0.7 * I mold temp.
T2 - -0.1 * 2 moisture content

T 5.5 # 3 holding pressure
24 * -0.3 * 4 cavity thickness
Ts - -3.8 + 5 booster pressure

- -0.1 + 6 cycle time
27 - 0.6 + gate sixe
Tg a 1.2 * 8 screw speed

T9 0 T1.2 " -0.6 * 1.o2 + 3.7 + 4.0 + 5.6

T10 a T1.3 - 0.9 * 1.3 + 2.7 + 4.6 + 5.6
Til a T1. a -0.4 + 1.4 + 2.8 + 3.6 + 5.7
TI M T1. M 4.6 + 1.5 + 2.6 + 3.8 + 4.7
T13 • T1.6 a -0.3 * 1.6 + 2.5 + 3.4 + 7.6

T14 a T1.7 a -0.2 2 1.7 + 2.3 + e.G + 4.5
T1S 0 T1.. 0 -006 1.5 + 2.4 + 3.5 + 6.7

TASLE 4. Calculated effects from a 284 design showing
alias structure assuming three factor and higher order
interactions negligible. Injection molding experiment.
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An alternative Bayesian approach (Box and Meyer, 1984b) As as followSe
Let TjoT.eee.eTv be standardized effects with

Ti = eA it effect inert
TA a eL + T if effect active

w- ~~ ~ ~ ~ ~ ~ * e+ 02le3'• H~OT 3"_

2 22
ej ,(00 )" T N(000

@2
Suppose the probability that an effect to active is a.

ae acLet a(r) be the event that a particular set of r of the v factors
are active, and let tr) be the vector of estimated effects corrisponding to
active factors of a(r). Then* (Box and Tiaol 1968) with p(g) t - the
posterior probability that J(r) are the only active effects is&

2P a I,~l i lrak-1 r f.1 tr 4(r|•

ar)k Lr,' II

where 8 (r) - 1r)2(r) and I - '•. in particular the marginal probability

that an effect i is active give T, a and k is proportional to

a 1- I.

k"

A active

"A study of the fractional factorials appearing in Davies (1954)1 Daniel
(1976) and Box, Hunter and Hunter (1978) suggested that a might range from

1' 0.15-0.45 while k might range from 5 to 15. The posterior probabilities
, computed with the (roughly average) values@ a a 0.30 and k a 10 are shown

in Figure 4(a) in which N denotes the probability (negligible for this
example) that there are no active effects. The results from a sensitivity
analysis in which a and k were altered to vary over the ranges mmntioned
"above is shown in rigure 4(b).

It will be seen that Figure 4(a) points to the conclusLon that active
effects are associated with columns 3, 5 and 12 of the design and that column
8 might possibly also be associated with an active factor. Figure 4(b)
suggests that this conclusion is very little affected by widely different
choices for a and k. Further research with different choices of prior.
with narginization with respect to k# and with different choices of the

* distribution assumptions is being conducted.

Vor three-level and mixed two and three level designs far example# this
* analysis is carried out after the effects are scaled so that they all have
'. equal variances.
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7. OT.ZR RSEARC¢I
Topics which are emphasized in Taguchi's approach to "off line quality

control" are (a) reduction or variation by error transmission studies and (b)
the choosing of a product design so that it is robust with raspect to
environmental variables.

these topics.,are also receiving attention in further research.
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DETERMINING COHPLIANCE WITH WEAPON SYSTEM
AND EQUIPHENT PERFORMANCE GUARANnES ,',.-

Perry C. Stewart

Army Chair ...
Executive Institute

Defense Systems Management College
Fort Betvoirs Virginia 22060-5426

ABSTRACT. Section 794 of the 1984 Defense Appropriations Act' requires
written guarantees from prime contractors that 'eapon gyateitd were designed I,

and manufactured to conform to the government's, performance requirements. ,
While warranties covering defects in material and workmanship and even 'produc,
perforn)ance agreements with contingent liabilities extending up to' 5 years
are not new on defense equipment, the scope of this lasfar exceeds 'past
contracting regulations. Since compliance must be determined tising 41
operational experience rather than controlled test d&Lae the experimental '

design, data collection, screening and analysis techniques are all -critical
aspects in negotiating agreements. Technical pr-oblems also arise on certain .,•

types of equipment where the data collected must be, from a surrogate ,A

population or some subset of the population whose performance may be affected
by non-uniform environmental or operational conditions. I

I. INTRODUCTION AND CLINICAL FOCUS. The aspect that was most disturbin$g
to the Department of Defense in Section 794 was not the requ'r-ement to cover
defects in material and workmanship but the ambiguous aspect. of (the -law',
requiring contractors to provide a written guarantee on weapon,' ystm
performance. Much of the initial activity responding to this requirement
has centered around the potential legal ramifications of contractorA acceptioS
long-term contingent liabilities for the operational perfurmance vf thcir
products. The underlying technical issue that lies at the heart of any
comunitment to guarantee weapon system performance has been largely tgnore4
to date. The basic Issue that needs to be understood in hov: Joss the
requirement dictated by legislation change the way in which the Covirn,'.,nt
determines that a contractor's product meets specified ntr formar-ce
requirements in satisfying a military need. Therefore, the focus should
really be on developing sound experimental designs when planning contract
strategies so that an adequate evaluation can be made of both proposed
warranty price as well as contingent risk and liabilities.

II. BASIS OF THE RgUQUIpRENT. The Department of Defense issued guidance
on 14 March 1984 to attempt to clarify the nature of the requirement. The
guidance specified that there would be two types of weapon system guarantees,
both contained within a single contract. The first of these' written I.v

guarantees is for conformance to specified performance requirements. Failure
to meet the guarantee as evident through either test or demonstration or ,1
in operational use over some specified period of time, would require the
contractor to design and manufacture the system to satisfy performance
shortfalls or repair or replace parts at no increase in price to the
Government, The second written guarantee covers freedom from all defects

307

I,%w

. . . ..... . . . . . . . . % .

• '•; •'• - - :: '-:• 1 : ;-: I ... I - -I - I -



in material and workmanship applicable to all end items for a specified
period of time. Failure to meet this guarantee would require repair or
replacement of components at no cost to the Government. The duration of
each guarantee may be different within a given contract. There ts a
requirement for guarantee costs to be evaluated considering both the potential
benefits and total cost to the Government. Contracting officers may include
clauses to limit the contractor's total liability for guarantees and require
guarantees at the component level where it is neither cost effective or
feasible at the weapon system level.

IIIM. CURR•NT ACCEPTANCE PROCEDURES. In order to understand the
potential impact of this requirement it is necessary to briefly review how
the Government determines acceptability of weapon system performance
requirements currently, In most cases the Government establishes performance
requirements through incorporation into a system-level specification. Upon
award of a development contract, the system design evolves to achieve the
performance requirements stated by the Government, The systems engineering
process is the overall mechanism that translates Government apecified
requirements into a delivered product useable by the Armed Forces of the
United States. During the development program there are a series of
configuration audits in which the contractor's design approach is reviewed
by the Government. The Government implicitly accepts the contractor's design
approach through an evolution on ongoing efforts during development such ,..
as conduct of paper studies, prototype evaluations, and developmental test
results provided at scheduled design reviews. At the functional configuration
audit, the contractor provides "design-to" documentation including allocated
specifications, drawings, test results, and proposed acceptance test
procedures for approval by the Government. Government approval of the results
of the functional configuration audit is an indication that the contractor's
design approach will meet the requirements of the contract including the
performance specifications. It should be noted that there is an implicit
acceptance of the technical risk associated with meeting the performance
requirements at this point in the development process. In similar manner
the Government determines that the contractor is ready for production through
what is termed the physical configuration audit, Information supporting
manufacturing readiness includes manufacturing plans, product assurance
plans, initial operational test results and product readiness reviews. Upon 6%

acceptance of the product baseline, again documentation consisting of
spacifications, test results, and acceptance test procedures, the Government
determines that a system or component will meet the requirements of the
contract for production. As items are produced, the Government determines
compliance with the approved "design-to" and product baseline through
acceptancem testing and inspection. In summary, except for latent defects,
fraud or id.sreprouentation, as well as short-term liability for defects
in materials aiid workmanship covered under a correction of deficienciels
the Government becomes the velf-insurer with respect to the use of the product
in Lhe operational environment. That is, the Government accepts the risk
of the adequacy of design to meet specified performance requirements,

EV. WHAT'S DIFFERENT? A written guarantee or a warranty survives
acceptance of the product by the Government. That is, the acceptability
of the product to meet specified performance requirements and be free from ''
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defects in material and workmanship may extend for a period of time during
the operational uae of the delivered system. Instead of determining the
acceptability of the product based on developmental test results in a
relatively well controlled environment, the full acceptance that performance
as evident through design and manufacture is now delayed for verification
in the operational environment. The basic design and manufacturing procesa
is the same but there could be some fundamental changes that may affect
the development effort including (l) Government performance goals may be
lower to recognize increased risk in determining compliance in the operationsl
environment; (2) the contractor's design approach may be more conservative
using proven technologies to reduce the contingent liability; (3) additional
development and operational testing may be proposed during the full-scale IS. 4,ý
development effort to reduce the technical risk of failed products that
do not meet the performance requirements; and (4) development contract costs
may increase because of the increased testing efforts noted and increased
emphasis on product assurance activities (minimizing the consequence of
significant performance shortfalls of delivered systems in the operational
environment).

",ý

An end result, however, the contractor's post acceptance liability *.,

increases because the technical risk that a product meets the performance ,.alW.
requirements of the contract has been shifted to some extent from the
development phase into the post delivery period for both specified performance
requirements and defects in moterial and workrvanship. A comparison of key
characteristics that drive this technical risk include (1) an evaluation
in the operational vs controlled environment; (2) operation by "green suiter"
and maintainers compared to highly skilled engineers and technicianst (3),,
extended commitments of up to five years vs as low as 90 days; (4) the need
to use operational weapon system related diagnostic equipment vs test
instrumentation; and (5) dependence on standard service data reporting
information to determine compliance in comparison with special data collection
procedures used in a controlled test environment.

V. CLINICAL CHALLENGE. As described above, procedures used to determine
the acceptability of products in the development process using the results
of relatively controlled testing and inspection is well defined. The
requirements generated by Section 794 of the 1984 Defense Appropriations
Act shift the determination of compliance from the development process into
the operational environment. The problem is to determine experimental design
guidelines for evaluation of products in the operational environment. Some
issues relative to the development of large-scale experimental designs and
anticipated results should consider, (1) using the total delivered population
to collect results or a selected sample of items that could be more closely
controlled; (2) the desirability, of sequential testing for risk reduction '.
throughout the extended production delivery period of a programl (3) methods I ..

used to relate the reported performance of "pseudo" products to the warranted
population. This occurs mainly in areas where training devices are used
during peacetime operations and war reserve material may reside in deep .

storagel and, (5) experimental designs considering the economy in determining
compliance with full consideration of the risk of accepting poor performance "..".-
and rejecting poor quality products.
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SUMMARY. On 3 January 1985, the Department of Defense issued Defense
"Acquisition Circular 84-9 as a temporr.ry regulation on the requirements
for warranties on equipment systems in compliance with the 1985 DOD
Authorization Act. Extensive warranties are now a mandatory requirement
for DOD programs. This continuing requirement creates a challenge and "" *
opportunity for mathematicians, statisticians and operations researchers "'i.

in support of the material acquisition process to provide experimental designs ,>
using data from the operational environment to determine compliance with
weapon system performance requirements.
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A Prioritization Methodology for Materiel Programs
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Abstract

The United States Army Training and Doctrine Command (TRADOO). performs
combat developments activities for the Army. The basis for estoblishing
future Army requirements Is the Mission Area Analysis (MAM) process* MAA
evaluate the capabilities of the programed force laginst a threat projected
about five years beyond the end of the current program* The deficiencies
uncovered are integrated and prioritized in the Battlefield lbevelopment Plan
(BDP) to put them in the peropective of the total battlefield. RQ TDAJiOC has
nov devoloped a methodology to link materiel programs in the Army's Long Range
IDA Plan (LIRDAP) to BD? deficiencies and prioritize these programs based on
their contribution to resolving BDP deficiencies. The metbodology employs set
theory to estimate the total relative vorth of each program and establish its
relative priority. The methodology contributes to year-to-year consistency in
priorities that should yield greater efficiency in the Army's allocation of
resources to materiel projects,
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I. Introduction.

The ArmyIs Training and Doctrine Command (TIlDOc) in partnership vith the
_Ases Materiel Comand (AMC) and UQDA are forging a coordinated effort to
improve the Army's materiel development and acquisition cycle. TRADOg'C
Mission Area Analysis (OAA)6 Battlefield Development Plan (BDP) and the Army's
Long Range Research Development and Acquisition Plan (LUDAP) provides the
roadmap for structuring and equipping the Army of the future. These processes
provide the means by which the Army can consider future .aquirements into the
Planning, Programming, Budgeting and Izecution System for resource allocation.

In response to ONS Cirtular A-109, AR 1000-1 tasks TUIOC with conducting
Mission Area Analysis to analytically support requirements for future Army
doctrine, training, organiuational structure, and materiel. As part of the
Concept Based Requirements System (CIB), TRADOC has divided the wartime
Battlefield mission Into 13 mission areas. Themse mission a&eam serve as
building blocks for measuring the capabilities of the programed force in the
current Program Objectives Memorandum (POX) to fight a successful battle
against a threat projected about 10 years into the future. These NAK and
their resulting deficiencies establish the battlefield needs/requirmentse. VQ
TRADOC in conjunction with its schools and centers and other major Army
commands integrates and prioritinesthese deficiencies across all .issio-
areas into a siugle ordetred list representing the broader perspective of the
total battlefield. In prior years, the XDP was an end product. While
indirectly influencing the priorities of doctrinal literature, training
programs, force structure modifications, or materiel developments there was no
direct linkage which would provide at analytically based rationale for the
relative priorities cf any of the Army's future developmental activities. In
1984, TRADOC set out to correct this anomaly by developing a methodology to
establish the materiel priorities for battlefield systems in the Armys Long
lange Research, Development, And Acquisition Plan (LURDAP) based on their
-outribution toward resolving one or more of the deficiencies in the BDP. The
establishment of such a mithodology will lend stability and crediability to
the priorities of the associated materiel programs while, at the same time
provide the audit trail back to the supporting analysis against the projected Y

threat, This methodology will therefore extend the total concept based
requirement system into the PP132 system (see figure 1). The quest for an
spprop•iate linkage methodology was triggered by TRUO¢C Regulation 11-9 which
requires that tho lStdies and Analysis Directorate (84D), Deputy Chief of "
Staff for Combut Developments (DC8CD) develop such a methodology for
prioritisiug the JULDAP bised in IDP deficiencies. This paper highlights the
theoritical underpinnings and general procedures which resulted from this
methodology developments
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I

BDP - LRRDAP LINKAGE.
w ;MAT

Li~i~J-sDP ~ NEVIENS
rARMY I UMBRELLA AILN j"m~ ?.~POC AUDANCE r CONCEaT BLE =FAA NIL

OCTIRINE usV

SPECIALI I TECH A

AMP

CONCEPT SUED REOWREMENTS SYSTEM

f igure 1

II. Methodolopy.

The priority of materiel programs should be directly related to theS~ priority of• the BDP deficiencies they eo•v,€t. Mas~teril programs that correct •
an important battlefield deficiency should be higher on the materiel priority
list. This methodology attempts to directly establish this lisk. Because of
the broad and general nature of existing 31P deficiencies it is likely that
multiple materiel programs are associated with each deficiency. On the other
hand, the same materiel program could contribute to the solution of more than
one deficiency. This 4omplication is considered aud this methodology will
make the necessary adjustments for those cases. A* example is show in
figure 2. ID e

IN• Def # ,"

1 2 3 4 5 6 . . . 76 *o 227

A I

"Materiel I 1 X
Programs

C I 1 z

D) I X

f igure 2
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In this case, program A contributes to the resolution of BDP deficiencies
number 3 and 76 while program C contributes to four deficiencies and program E
to only one. As we vill establish later in the paper this does not in itself
Justify that program C has more benefit to the Army. In the example, program
I is the only program which contributes to the resolution of deficiency 4
"while each of the deficiencies affected by program C also has other programs
which make a contribution. As an additional factor in understandiug the
"mathematical foundation of the methodology, one must alp-o consider the nature
of.the iDP deficiencies which drive the prioritisation effort.

UDP deficiencies are aggregations of specific HA deficiencies and as such
are sets of comonly related battlefield problems. While there are
"approximately 1400 specific MA deficiencies in the NAA process, these are
aggregated into 227 IDP deficiencies which are them prioritised by a large
group of general officers. This group is representative of all combat
missions of the Army. Figure 3 shows the relationship of the 1400 specific HAdeficiencies which are aggregated into the 227 UDP deficiencies for'V.4prioritization by the general officers.

MISSION AREA DEFICIENCIES 1400

"* *

-" ~BATTLEFIELD DEFICIEN'CIES

'000

-'.', figure 3 •
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Because IDP deficiencies are aggre.ations of specific m/ision area

deficiencies and each deficiency could require multiple programs for its
resolution# the matbonatical concept of set$ is appropriate. living
established a stt of materiel programs for the resolution of each ID?
deficiency (which itself is a set of the more specific KAM deficiencies) the
methodology uses an underlying assumption that to the extent a materiel
program contributes to multiple 3D? deficiencLes, these deficiencies have
overlapping characteristics and there is some degree of commonality among
thneme

The example (figure 4) illustrates this idea. That is$ if a materiel
program contributes to the solution of three ZDP deficiencies (IDPE10, BDP#3
and BDl/ 11). then by fielding this program we are simultaneously solving a
fraction of all three deficiencies. The methodology must not over credit
a program's battlefield contribution by assuming that the set is disjoints.

PROGRAM CONTRIBUTION

PROBLEM:
n• i WHAT IS THE VALUE OF A MATERIEL PROGRAM

THAT CONTRIBUTES DIFFERENT AMOUNTS TO
DIFFERENT DEFICIENCIES?

E.G. PROGRAM I CONTRIBUTES:S1.6 TO SOP W1

0.4 TO SOP 0 30.1 TO SOP 011

figure 4

The question then arises about the degree of overlap. since there is no
feasible method of quantitatively measuring this overlap, existing procedures
assume that it is propotional to the degree of contribution of the program to
also quite accurate, If a program sakes a very large contribution to two

different deficiencies, they should show a significant degree of overlap in
the deficient battlefield functions addressed. On the other hand, a program
with a very minor contribution to two (or many) deficiencies would establish
only a small degree of overlap auong the deficiencies in question. The
athematics to handle these phenomena utLlise the well know unlow operations
ipplied to sets. In the example of figure 4 program I contributes 0.6, 0.4, :' :'
and 0.1 to the three deficiencies. Therefore, the combined solution
(correction) to the three deficiencies is 1&78 not ,JIM. (.6 +.4 *.1 1.1).
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combined contribution -

a 0.784

Another desired feature of the methodology would account for the fact that
some materiel programs contribute to higher priority deficiencies (or groups
of deficiencies) than others. lot example, if two materiel programs
contribute an equal amount to different sets of deficiencies, the one
contributing to the higher priority set of deficiencies should have aore
battlefield worth. This is illustrated for program& I and T in figure 5., ,
Both programs have the same amount of contribution (.6 and .1) but the set of
deficiencies affected by program X is prioritized higher than the set affected
by program Y. In this case program X would be prioritized higher.

Program X Program T
3DP # Contribution IDP # Contribution:I ...,

16 .6 62 .6
36 1 84 61

figure 5

In order to resolve this complication a deficiency weight must be assigned to
the 3DP deficiency that reflects its relative priority position. Fot the IPN
84 prioritization a uniform distribution of weights was used ranging from 0 to
1. This mathematical assignment was made according to the following formula.

In the case where n a 227 and where i 1 2, 3, ..*, 227s Qi. Q3o and Q11
take on weighted values of 0.997, 0.988, and 0.953. These deficiency weights
when applied to the contribution estimate results in a priority-adjusted
contribution value of 0.780 (figure 6) for program I* Therefore, materiel
programs that effect BDP deficiencies of high priority will be perferred over
materiel programs that effect lover priority deficiencies.

Assigning a numerical value to the degree of contribution of a program for
a deficiency is another subjective area open to debate and future research.
After some preliminary research and trial applications into different scales,

she authors arrived at a five point scale using the narrative descriptors
6hown in table I and values of 0.6, 0.6, 0.4, 0.2, and 0.1 for categories A
through I respectively.

These five categories will discriminate enough to ensure that materiel

programs making a significant contribution to high priority deficiencLes will
receive favorable treatment in the competition for funding.
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SET THEORY
in *XA U1 UXl- XA +- X1 + Xc- (IXAn R)

-(XAnXc) - (XIA1)
+ (XA,, X1n XC)

EE.G. V(P)x - (.997X.6) + (.988X.4) + (.953X.1)
- (.997X.6X.988X.4) - (.997X.6X.953X.1)
- (.998X.4X.9l3X.1)
+ (.997X.6X.essX.4X.953X.1)
, .780

£Lpaue 6

Table I

CONTRIBUTION CATEGORIES'

A. ABSOLUTELY ESSENTIAL TO SOLUTION OF DEFICIENCY *

B. MAJOR CONTRIBUTOR TO SOLUTION OF DEFICIENCY

C. SUBSTANTIAL CONTRIBUTION TO SOLUTION OF DEFICIENCY

0. SMALL, YET STILL DIRECT CONTRIBUTION TO SOLUTION OF
DEFICIENCY

E. LIMITED OR INDIRECT CONTRIBUTION TO SOLUTION OF
DEFICIENCY
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The sathematLes of set theory descriLe•.- obcve, the 3DP priority weight and
the contribution scale$ establish the materiel program relative worth* This •.,•.
formulation can be geuneralied in the fo1ovLnn foms,

GENERALIZED FORMULA

V(P i, f) All

WHERE: Aj+
_ Vi, - TOTAL RELATIVE WORTH OF PROGRAM I
n - NUMBER OF PROGRAMS CONTRIBUTING TO

DEFICIENCY I
All- PRODUCT OF THE POSITION VALUE FOR

DEFICIENCY] TIMES THE CONTRIBUTION
OF PROGRAM I TO DEFICIENCY J

The following example is an application of the methodology applied to three
notional materiel programs.

EXAMPLES

PROGRAM X PROGRAM Y, PROGRAM Z
10P CONT OOP CONT OPP CONT

PIN VALUE VALUE PSN VALUE VALUE .fN VALUE VALUE
.1 .099 .1 1 .9? .8 s6 .721 .1

14 .043 .4 142 .... .4
37 .845 .1 202 .143 .1

Vp -A + 8+ C - (AD) (AC)- (BC) +-i (ABC)
Vp -398 . Vp .75 Vp .306

f Lure 7
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This ezample demonstrates that program!Y is prefered over program I and
program Z because program Y contributes to three deficiencies in the top 20
percent of the overall list. It should be pointed out at this point that the
numbers generated by this methodology to prioritize prograsis represent ordinal
rather than cardinal rankings. Itcause, the deficiency values are scaled S
uniformly from 0 to 1 and the contribution weights are subjectively
determined, the resulting calculations produce numbers 'without scalar
ujgnitude. That is a program vith a value of 0.8 is more important than one
with a value of 0.A one cannot conclude that it is twice as important* In the
prioritimation of materiel programs it is sufficient to determine only the
relative order of the candidates; It is not necessary to measure the Interval
between them, Research is currently underway to Investigate any benefits that
may accrue by trying to produce a list with more scalar properities. The
steps in the prioritization methodology used in 1984 to prioritize the LIJMA?
are sumariasid In Table Its While the first three steps have been describedI
in some detail above, the last three need a few notes of clarification.
Having establiabid an initial prioritization of programs using the stated
approach, the methodology attempts to account for the differences in time.4
(imear term, mid termo far term) * RAD and procurement costs (high, mediu~m, o)
and developmental risk (high, medium, low) While mathematics have been
developed in the program to consider these factors# time and the availability
of input data did not permit their use in last years implementation of the
priorities program.- Further rosearch is underway to evaluate different
methods of considering these factors and also the manpower impacts and the
amount of investment already sunk into each program.

Procurement program prioritLiation had to also consider what is referred
to as "base case" programs because the mission area analysis studies took as a
given or base. case all those programs currently contained in the Program
Objectives Memorandum (the Army's 5 year planning and programitng document),RI
new deficiencies for the 3D? were not generated to support continued

TABLE 11

1 * DISTRIBUTE DEIICIEICINS UNIFORMLY BETWEENI 0 and 1I4

2, DETERMINE CONSTRIBUTION OF PROGRAMS TO EACE DEFICIENCY a'

3 * DzTE1.MiI CvUMLATIV COwiTRBUT FOR 10 ECs PROGRAM
(CONSIDER INTERACTIVE EFFECTS)

4. ADJUST COITRIBUTION BY ThS, COST, RISK, MANPOWER, AND
SUNK IN VESTMENT

5. PRIORITIZE PROQRAMS

6,* PIN TO "BASE CASEO LIST (PIOCUREMENT PROGRAMS ONLY)
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procurement of these prolgrams. Since the7 vould have no calculated program .
value, they maintained their original LRRDAP priority and the prioritized list
of never programs was integrated or "pinned" into this list. Ion-battlefield
programs outside of TADOC responsibility were also handled like base ease
prortess.

m , nL~ iT..

Although developed in only a short period of time to be used in last
year's LIRDAP prioritisation process3 this methodology demonstrated the
feasibility of linking usteriel program priorities to the deficiencies
contained in the battlefield development plan. Manual or "cosmon sense"
adjustments had to be made for example to align the 6.33 and 6.4 components of
the same program to place them In the same funding band (funded, at risk,
unfmuded). tn the end, of course, the list vas subjected to expert review at
the 0-6, 0-8, 0-9, and 0-10 levels, Of the over 300 KUDT programs prioritised
with this hasty methodology, sore than 652 retained their relative position
and rank in the final approved DA Long Range Plan (figure 8).

OVER 300 RDT&E PROGRAMS WHERE PRIORITIZED
-THIS YEAR....

• ,~to Nt to,"

110 00 01

P00C~U (TPI N00,5 go 1

,ml ...

"WIt111t I so 1e 150 too Itso

figuer 8

Research continues in the areas described throughout this paper and on
variouu meaus to maintain a relative consistency of program priorities from
year to year. Contributors desiring additional information or visbing to
coment on proposed improvements to this process are encouraged to contract
the authors by phoning (804) 727-3004 or by writing NQ TRADOC, ATTN: ATCD-A•,
It Monroe, VA 23651-5000. S,

320

• . " ., %. ., ... ,.* .* *,* ,- •. ? ,- . . . '.........%. . , .17 '. . - , ' k' P ,e, . i. ...' , .. ,-.,.. . -

w~*~ i ''5•i~



PROPOSED ADDITIONAL INFERENTIAL INFORMATION
DURING AND AFTER HYPOTHESIS TESTING

Paul H. Thrasher

Plans and Quality Assurance Directorate
White Sands Missile Range, New Mexico

ABSTRACT

Two statistics, denoted by OT and a q-value, are proposed to provide

flexibility and inferential information during and after hypothesis testing. ,

These two statistics supplement the well-established statistics normally,

denoted by beta and the p-value. The purpose of OT is to emphasize the true 4o";

value of beta after the design of the hypothesis test but before or during the

obtaining of data. A q-.value, in conjuction with the p-value and associated

power curves, has potential uses in (1) overruling the decision of the.

hypothesis test, (2) ordering additional testing, and (3) procurement cost

analysis.

INTRODUCTION

During the development of statistical inference, there were two distinct

needs and resulting philosophies. A statistical technique was needed to

estimate the bounds of capabilities of existing equipment or processess.

A different statistical technique was needed to test the conformity of newly "
L

procured equipment and/or new processes to required specifications. The first ,.-,,

of these needs led naturally to flexible ideas such as confidence intervals.

The second was met by the rigid procedure of hypothesis testing.

a,', tV
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STANDARD HYPOTHESIS TESTING

The standard philosophy used in hypothesis testing is to (1) assume that

some parameter of a proposed piece of equipment or process conforms to some

standard and (2) abandon that assumption only if there is sufficient evidence

that the assumption is highly unlikely. The initial assumption, which is

called the null hypothesis and denoted by Ho, is expressed in an equation

relating the physical parameter being tested aWd the specification value of

that parameter. The significance level, denoted by alpha, is the minimum

acceptable probability that the actual test data could have come from a

population for which the null hypothesis is true. Physical.measurements give

a standard for evaluating the reasonableness of Ho as a description of the

equipment or process under test.

Alpha is one of two risks in hypothesis testing. It is the risk of

rejecting the null hypothesis in favor the alternate hypothesis, denoted by

H., when the null hypothesis is true. The companion risk to alpha, which Is

denoted by beta, is the probability of not rejecting the null hypothesis when

the null hypothesis is not true. Beta depends on four parameters which must

be established jointly by the statistician and the manager of the equipment or I.%

process being tested:

(1) Alpha,

(2) The specification value of the parameter being tested as stated in

the null hypothesis. '

(3) A specific value of the parameter satisfying the alternate

hypothesis.

(4) The number of proposed physical measurements of the parameter being

tested.

322

.* ,, * .. ,. .. ,.. ,.....

.... * - .. ... .... ..'. ~ * * * * .... . ,__ . . ...
• I Ij I I5 5 I ~ i , I . I " ,I .I~ ~. I* I "-



Beta is found from the statistics function which describes the

distribution of the test statistic under various alternatives. Since there

are many values of the parameter being tested that do not meet the ,.

specification, there are many betas. The power curve is defined as the graph

of one minus beta versus values of the -parameter being tested. Since one

minus beta is the probability of rejecting the null hypothesis when the null ,.

hypothesis is not true, the power curve is defined more generally as the graph

of the probability of rejecting versus values of the tested parameter. Alpha

and beta have several commonly used names including type I and type II risks,

the producer's and consumer's risks, and the government's and cortractor's

risks. The second and third sets of names are obviously 'interpretative and

explanatory when hypothesis testing is applied in procurenment actions. Alpha

and beta are competing risks; as either of them increases, the other

decreases.

In the operating procedure traditionally used in hypothesis testing, there lo

are three rigidly ordered steps:

(1) Formulate a statistical test.

(2) Obtain data from a physical test.

(3) Use the data and the statistical test to either reject or not reject **1 ,

the null hypothesis.

The first step is called the design of the experiment; this statistical

design procedure consists of six sub-steps which are performed by the

statistician in consultation with the manager: L"
(1) State the null hypothesis.
(2) State the alternate hypothesis.

• ~*I't
S5. *

(3) Select a value for alpha.

!,",,....
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(4) Determine a rejection rule form the appropriate statistical

distribution function which describes the parameter being tested.

(5) Select a value for beta from some particular non-specification value

of the parameter being tested.

(6) Determine the number of measurements that must be made on the

parameter being tested.

In actual practice, there are two common modifications during the ;

formulation of the statistical test. A range of non-specification values of

"the parameter being tested is normally considered in the determination of the

number of measurements necessary to achieve the selected beta. This procedure

requires the use of engineering Judgment to determine the range of values on

the power curve. A modification of both alpha and beta is often necessary to

formulate the statistical test with a reasonable and achievable number of

measurements In the physical test.

In classical hypothesis testing, the physical test is performed inde-

pendently of the formulated statistical test; no analysis of physical test
data is made until all measurements are made. As hypothesis testing is

actually practiced, the data is often modified before the final analysis; that

is, outliers in the data are often discarded by a process which may be

systematic or logical.

In traditional hypothesis testing, tht decision to reject or not reject I::.4.

the null hypothesis is based on the retained data and the decision rule from

the statistical test. Once the decision is made to reject or not reject, tho

. process is complete. No consideration is given to the margin of passing or

"failing and no questions are considoe J oncerning possible modifications of

the statistical test.

%%
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MODIFICATION OF ALPHA

The application of hypothesis testing using the traditional and rigid F

method outlined in the previous section has a major practical obstacle. It

provides managers with no guidance other than to reject or fail to reject the

null hypothesis. While this might seem sufficient to a statistician who is

lead to believe that the statistical test properly considers all aspects of
-g i-i

the proposed equipment or process, the manager may well find this "go no go"

guidance sorely lacking. The manager may have to consider the effects of more

than one parameter, the political influence of pressure groups, and the

economic impact of implementing the new equipment or process. A manager

facing these problems needs all the help that the statistician can provide. ,_

While the statistician cannot solve the manager's problems, he/she can at

least provide more information about one parameter than a bare "go - no go"

recommendation. This is done by a modification of alpha based on the data

from the physical test.

The p-value of a hypothesis test is defined as the value that alpha would l.

have been necessary, in the original statistical test, to make the result of

the decision rule indecisive. It is the value of alpha which would act as a

pivot between rejecting and not rejecting the null hypothesis; it is ..

calculated uaing the data from the physical test. It provides the manager,

who must consider all factors and make the final decision, with a measure of

the degree of certainty of the bare "go - no go" recommendation from the

hypothesis tasi.. If a manager wishes to make a final decision which is the

opposite of the result of using data trom %e physical test in the decision

rule of the statis).ical test, the p-value proviles him/her with a measure of

the risK thmt must 'e taken to over-ule the JudgmuinL of the hypothesis test.
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The existence of the p-value is certainly not new; however, Its usage has

increased in recent years because managers have needed more flexibility.

R~eporting the p-value to managers, who make final decisions, has the effect ofK-S

loosening the rigor of the formal hypothesis testing. The p-value provides

the final decision maker with more flexibility; it also tells him/her how

flexible the result of the hypothesis test is. Very low values of the p-value i,

imply that the null hypothesis can be rejected only if the producer is allowed

a very low risk. Very high values of the p-value imply that the null

hypothesis cannot be rejected unless the producer is forced to take a very ' A"

high risk. Values of the p-value that are near the alpha of the original K,.;
statistical test imply that the null hypothesis can be rejected if the

producer takes a risk near the original alpha.

PROPOSED MODIFICATION OF BETA

The modification of alpha as outlined in the previous section Is well

established. In this section, modifications to beta and the power curve are

proposed to further increase the flexibility and reported information of

hypothesis testing. These proposals are motivated by the desire to aid

decision makers as much as possible.

There are two critical parameters which may logically initiate a

modification of beta after the standard hypothesis test is completed. One is
1; , ,,,

the p-value; it will differ greatly from the alpha of the original statistical

test If the data from the physical test leads to an extermly strong recom-

' mendatiun to either reject or not reject the null hypothesis. The other

"critical parameter is the number of measurements actually made on the physical

parameter being tested. It may be larger than the number proposed by the
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statistical test, but the more common change is for it to be smaller. In

actual practice, the number of measurements in the physical test is often

lowered by constraints of cost, time, and/or limitation: of personnel,

facilities, and/or equipment.

The two critical parameters result in two logical modifications of beta.

These modifications are denoted by OT and a q-value In this section. They are

obtained from the same basic mathematical algorithm that yielded tho original

"beta of the statistical test, but different inputs are used in the algorithm.

" The statistic denoted by OT is defined as the result of the beta

calculation in the design of the statistical test when the number of

measurements actually made is used instead of the number that was planned.

The same alpha, specification value of the parameter boing tested, and actual

value of the parameter being tested are used in the OT calculation as were

used In the original beta calculation; only the number of measurements is

changed. The numerical value of OT will be higher than the value of the

original beta if the number of actual measurements is lower than planned by

the statistical test.

The statistic denoted by OT is the consumer's true risk when the data

actually available from the physical test is analyzed. The "sub T" notation

Is used to emphasize that OT is based on the true number of measurements in

the actual physical test. A manager can use OT as a measure of how badly a

* hypothesis test would be damaged if he/she is pressured into changing the 1"
,Umber of oeasurements in the planned physical test. Pressure for such a

change can occur be goeen planning and testing nr during teating. Naturally ,,

the matiager Is concerned about more than one possible teiie value of the tested

parameter. il i means that he/she nveds thk entire power curve based on OT'

S27, -
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Of course, this might have been one curve in a family of curves that was used

to design the statistical test. Unfortunately, the manager might not have

access to or knowledge of this previously calculated curve. The statistic 8OT

is proposed to rectify the managers' lack of information. The decision maker

needs a power curvo based on 07 at the time that pressure exists to change the

number of measurements. Statistical advice may be needed after the

sttatistical test is formulated but before the data from the completed physical

test is analyzed. The statistician should provide the decision maker with

relevant values of OT between the formulation of the statistical test and the

analysis of data from the physical test.

A q-value is defined as the result of the beta calculation in the design

of the statistical test when twu chanoes are made. A q-value is calculated

from the p-value instead of the original alpha and frorm the number of measure-

ments actually made whether or not this is the number that wat planned in the

original statistical test. The same specification value and actual value of

the parameter being tested are used in a q-value calculation as in the

nriginal beta calculation. Since there are many potsible values of the

. parameter being tested, there are many q-values. Use of the same possible

. parameter value that was used in the beta calculation allows direct comparison

between a q-value and beta. A q-value tends to be higher than the original

beta if the number of actual measurements is lower that planned or if the

p-value is lower than the original alpha. Similarily, more measurements than

planned or data making the p-value higher than the original alpha tends to

make a q-value lower than the original beta.

A q-value integrates information about both the number of measurements

actually made in the physical test ana the results of these measurements.
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A q-value has three potential uses:

(1) Provide information about beta if alpha is changed to the p-value

after the hypothesis test in order to make the test indecisive.

(2) Indicate the need for additional testing to make the test more

deci sive.

(3) Consider as a rating factor for the payment in procurement costII
analysis if the consumer accepts equipment or services that fall the

hypothesis test.

If a decision maker has influences which contradict the result of a

completed hypothesis test, there are two contrasting situations which are most

intelligently considered by using both the p-value and a-q-value. I f the

decision rule results in a recommendation to reject the null hypothesis, alpha

must be lowered to the p-value if the hypothesis test is to be viewed as

indecisive and the other influences are to have no opposition. In this

situation, beta for a particular non-specification value of the parameter

being tested must be raised to a q-value. In the opposite situation, the

decision rule results in a recommendation to not reject the null hypothesis. f
In this case, alpha must be raised to the p-value and beta, for a given value

of the tested parameter, must be lowered to the q-value In order to make the

hypothesis test indecisive so the other influences have no opposition to
rejecting the null hypothesis. In both of these situations, the decisioni
r'aker should be aware of the changes in both alpha and beta. Thus the statis-

tician should report both the p-value and a q-value. Of course, the decision

maker is often interested In more than one possible given value of the tested 'Sa

parameter; thus the statistician should report the entire power curve based on

q.values.
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Increasing the amount of physical testing always reduces the risks in

hypothesis testing; the amount of additional testing after a hypothesis test

is completed may be determined from the power curve based on q-values and

other power curves based on the p-value and proposed increases in the number Q

of measurements of the parameter being tested. If a decision maker is willing

to accept the lowering of alpha to the p-value but is hesitant about raising

beta to a q-value, more testing is necessary. The amount of additional

testing is determined by the consumer's risk that the manager Is willing to

take. Oncethat consumer's risk is determined for relevant non-specification

values of the parameter being tested, power curves may be used to determine

the amount of additional testing. The additional number of measurements which

the manager is ordering is the difference between the total number determined

by the power curves and the number of measurements in the initial hypothesis

test. The statistician should report power curves based on q-values cal-

culated from the p-value and both (1) the number of measurements actually made4:

"and (2) proposed increases in the number of measurements. This Information

allows the manager to evaluate the return from additional testing.

When d piece of equipment or a service is procured, the procuring agency

may accept delivery of a product which produces an unexpected result in a

hypothesis test; the p-value and a q-value might be used to adjust the payment

to the supplier. One standard procedure in procurement actions is based on a

,igid hypothesis test. The product is rejected if the decision rule yields a

recommendation to reject the null hypothesis that the specification is met.

, There are two problems with this standard approach. The supplier has no

reward If the product is good enough to pass the hypothesis test with a

p-value higher than alpha. Also, the procurer must use additional
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Justifications to accept a product that can be made to satisfy an urgent need

even though it is bad enough to fail the hypothesis test with a q-value lower

than beta. A proposed solution to these two problems is for the procuring it y;
agency to execute the following cost analysis procedure:

(1) Set a specification, for the null hypothesis, which is a value of the

tested parameter that all :.•, im~ceptable but not exceptional operation

with the equiment or servie.

(2) Set an alternate hypothesis value of the tested parameter, as close

to the specification as feasible, which is not acceptable.

(3) Set alpha, beta, and the number of measurements of the tested •

parameter after balancing the risks and the cost of testing,

(4) Call for blds to set the payment if the hypothesis test yields a

p-value equal to alpha and a q-value equal to beta.

(5) Establish a continuous scale of price increases for each p-value that

is hgethnalpha.

(6) Establish a continuous scale of price decreases for each q-value thatIs higher than beta.

(7) Obtain a random sample of the equipment or service, perform the

hypothesis test, and implement the result of the procedure.

An optional step might be exercised if the supplier or the procuring agency

doesn't accept the result:

(8) Do more testing if either the supplier or procuring agency Is willing

to pay for it in an attempt to raise the p-value or lower a q-valu6.

Naturally, these steps must be described at the time of the invitation for

bids so potential bidders can decide how to respond. Steps 5, 6, and 8

might be topics for negotiation butween the prov:uring agency and potential
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suppliers. This proposed procedure is only one possible solution to

procurement confrontations. Another procedure might be desired if sufficient

testing can establish that the tested parameter is within a narrow interval

with a high degree of confidence. This 7 or 8 step procedure should be

considered for procurements in which limitation of testing is expected to make

clear-cut procurements decisions impractical or impossible.

E.XAMPLE

The example presented in Figures One through Eleven Illustrates

modification of alpha and beta in a classical hypothesis test on the variance

of a normally distributed random variable. The null hypothesis H0 for

this test is the assumption that the variance is less than or equal to a

standard. The chi-square distribution is appropriate for the random variable

(n-l)s 2 /o2 when n Is the number of measurements used to find the sample

variance 32 which estimates the variance 02. The number of degrees of freedom

v is giver, by n-1 for this X2 statistic. The numbers in this example have

been chosen to depict a hypothetical process-improvement development in the

manufacture of glass with a low variance in its index of refraction. Existing

manufacturing processes are assumed capable of yielding o2 = (1o)8; but this

variance is considered unacceptable for the prototype process-improvement
which is intended to reach a standard of o2 w 4 (10)100.

o
Figures One through Four show information that is useful before and during

data taking. Figures One and Two contain the information that a statistician

should present to enable a manager to complete the design of the hypothesis -'..

test. Figure Three shows the designed hypothesis test after the manager has

selected a planned sample size. Figure Four reports the information that the
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statistician should present to the manager if pressures exist to change the

planned sample size.

Figures Five through Eleven show possible results for different sets of

measurements. In Figures Five through Eight, four different values of s2 are

used to find the p-value and a q-value for o2 For any measurement, the

p-value is obtained by setting the calculated value of the distributed

statistic equal to the statistic that yields a percentile given by the

p-value; that is, alpha is replaced numerically by the p-value. The

calculation -of a q-value is similar to the calculation of beta in that a non-
specification value of the tested parameter must be used; the difference is

that beta is a function of alpha while each q-value is a function of the

p-value. Individual addition shows that the four sets of p-values and

q-values in Figures Five through Eight have sums loss than one. Figure Nine,

which is not drawn to scale, illustrates graphically that the sum of these

paired statistics is alwaiys less than one. This occurs, for alpha and beta as

well as for the p-value and each associated q-value, because the area under

the probability density function f(x2 ;v) is equal to one. Figure Nine also

shows that an increase in one of these statistics is always accompanied by a

decrease in the other. Measurements leading to a strong recommendation to

reject Ho will yield a low p-value and high q-values; opposite extremes In the

p-value and q-values result when measurements strongly imply that Ho should

,iot be rejected.

Use of the p-value and associated q-values after the hypothesis test, for

purposes other than gaging the intensity of the decision to reject or not

reject Ho, requires analysis curves. Some of these curves are presented and

interpreted in Figures Five, Six, Ten, and Eleven. In Figures Five and Six
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where s2 is close to the critical sample variance s which separates

rejection and non-rejection of the null hypothesis, power curves are

presented for the manager to use in considering additional testing. Also in

Figures Five and Six, hypothetical algorithms are presented for adjusting the

cost and the results of these algorithms, the p-value, and a q-value for C2
u

are given. It must be emphasized that the manager, in consultation with the

statistician, should establish these cost adjustment algorithms. The manager

may design an algorithm other than a straight line; he/she may also use a

maximum p-value pm and a maximum q-value qm other than the simple ones used

in Figures Five and Six to limit the change in cost caused by results of the

hypothesis test. Figure Ten summarizes the numbers of Figures Five

through Eight which are all based on a sample size equal to that planned in

Figure Three. Figure Eleven presents a similar summary for slightly different

actual samples sizes.

CONCLUSION

Modification of alpha and beta makes hypothesis testing less rigorous and

allows managers more flexibility. Modification of beta in the interim between

the design of the statistical test and the completion of physical measurements

allows managers to make informed decisions concerning changes to the proposed

number of physical measurements. Modification of alpha and beta after the

typothesis test is completed allows managers to make informed decisions

about (1) consolidating the result of the decision rule with factors not __"

considered by the hypothesis test, (2) the value of additional testtngo and .•

(3) compensation when specifications can be considered as met with risks

different from the original alpha and beta.
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Figure One --- Partially Designed Hypothesis Test:

Part 1 --- Ho: o2 _ a2 " 4 ( 1 0 )-zO a < P [Reject Ho I a0) * .01

Ha: a2 > 02 Test is One Tailid

Part 2 --- Rejection Region: A IV X41 i
_were x2 (n-1,2/02o

Nx2;v) with ,9 a number of measurements
f (x, ;V)

and &2 a sample variance

00 IVI

Rejection Measuromentý x2,V a (ni-)12c/01 Ron> 82 "2 x 24n-./(n, •

Figure Two :::Power Curves for T:;t Design:e-%k1L

, • Power * P [Reject H0 I o2] w PCS 2 > 123

S" P tln..1s 2 /c 2 > UIn-i) / 2 } {o2 4
1 n.1 / (n-nl)2 2

:,,.P Nn--sk/ to xaon. (n-1))3n~z

*P Ex 2 > {02 / 2) x

'.'.'~n |i3 I Top ,
.,.~ ~ M g i Iddle 5

-C,e

5 Bottom•0
0,(1)8 0.5 1.00 C12 (l0 8e•,.
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Figure Three -- Hypothesis Designed with n-7: %

Part 1 --- H: 02 < C12 4(10)-10 P [Reject H0 Io J *2 .01

H: 02 > (2Test is One Tailed

Part 2 -- Rejection Region: x oin- x2 01,6 *16.8

where X2 *(n-1)3 2/02~ I 6s2/02~

with n a number of measurements
f (x2 ;V)

001 and s2 a Sample Variance

0

Rejection Measurement: x2  man> 32 02 1.(0

0 part ... If *2u(10)-4; 0 a pEs 2s,2J.pE(n-1)s2/o (l<(n-1)}/o02 uP323mC2.6723 a .005

Figure Four -- T a0d Power 'T I IT Curves If n is Changed to 3:

0TPart - If 02.(10)-1, p[1<2 rLS2<0c.Jr Ix PKl O IXn..J 0 PEX2<4368J .168

.4

3 Bottom

0 02(10)ý 0.5 1.0 0 "10(10)8 0.5 1.0
0 2(10)8 0 2(1o)8
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Figure Five --- Inferential Information from Design and Hypothesis Test If s2 >U2

0

and s2 Implies Rejection of Ho: a2 < 02 4(10)"10 with am.01:
an sI 0;

Part 3 --- If s2 a 12.3(10)-1o from nm7 measurements; x2 * (n-1)s 2 /o 2 - 18.45
P 3 - If0 sv

Part 4 --- Since X2 * 18.45 > 16.81 x !01,6 Reject H,

p Part --- To Barely Not Reject Ho; 4 ,v x P, 0 18.45 mum> P-value a .005

Part --- f If v (10)"6; q-value - 1-irq PCx(<{o2/0 ,J - PIx22<.743 .o006

Power Curves:

.07

& Tq+4 11 Top
q+2 9' Upper Middle I

7 LoWer Middle ,,'7q ! 7 IBottom •,,N'•

0 0 I..

0 0'2(10)8 0.5 1.0 0 o( (10) 0.5 1.0o0 (1210 )8 02(10)8

Cost Analysis: \.

10

Price Decrease Use of the q-value of .006 and
in Percentage the graph to the left yields a
of Target Cost price reduction equal to .017%

of the target cost

0

q-valueb

S .005 from design',

qm P[x2<(32/02 I 2 v'(n-1)s2/l2 and s 2.-oJ P[x 2 <(n-1)] - P[x2(61 - .58 K.
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Figure Six --- Inferential Information from Designed ilypothesis Test if s2 o0 and

s2 Does Not Imply Rejection of H 0: 
2 < 4(0-b wty2.1

Part3 -- I S2 * 84(1)10from n.7 measLv'emenits; 2 *(n-iW)s2/iu 12.6

Part 4 --- Since x2 .12.6 <(16.81 x!01,6 Do Not Reject HO,

p Part -- To Barely Reject H; ,, v * P.6 2 12.6 * O~ -value *.05'

qPArt --- If *2 * wa).; q-value 1 -i~ PtX(~0d~v P*'0Ja.02
U 0 U * ','

Power Curves:
24

1I. 7 -1 o

'q2 9 Upper Middle
w 7 Lower M1iele

0 2(va91O)a 0.5 1.00(2(0) 01.

Cost Analysis: 10 ~ ~ C0S~ ~~)

Price Increase Uzo of the p-vallie of .05 and

in PerCentage the graph to the left yields

of Target Cost a prh.,t enhancement,. equal to
.17% of thie target cost

0
P'M

p-valueOn

~ 01 from design

~m P[X 2 > x2  J PCX 2 >(n-1Ws/0 2 3 2 >rx 6] -nlJ*Px .42

m pmf 0
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Figure Sev,ýn'--- Inlarential InforINAtlon from D~sigmed Hypothesis Test If s2 ~

So S2 Forces Management to Use a Quite Low D-value to View the

Test Of H0:O o2 4 -2 4(10)in10 with a a.01 a's Indecisive:

Part 3 --- If s2  22(10)-10 from 0u7 measurements; x2 n1s/ 33

Phrt 4 --' Since x2 - 33 > .16.81. x!01 aX2 ~~ a X2. Reject Ho

p -~rt-- To Barely Not Reject H.; 2, X2 3*- -v~~*.00

q Part I- If a2 a(10)"0. q-vaiue a 1-vq PL'2a4J/112}X2*) ptK2<1.32) 0
- qU - o

Fiur Egh Ifeenia Ifomaion from Designed Hypothesis Test if ý. < 0
Figre igh -- IfewIntalInfrm-o0

"Ss Forces Management to Use a Quite, High p-value9 to View !the

Test of H 0: 2 < CIO-")1 with 4 .01 as Indecisive:

Part 3 -mIf 5 26 10il from na? measurements; x, (n1s/a2

Part 4-- Since x2  3.825 < 16.81 x0 1  *v2 Do Not Reject H0

p Part -- * o Barely Reject Ho; 4,IV p.65 3.825 *-.> p-value *.700

q Part - If o' a (10)-8; q-value 11 p[X 2<ia2/O21j 2  3 PEX2<.1633 .00007

Fiqure Nine --- a a0 anl p a q on Graphs of s2 Vs f(X2;v) with van-i A x2mVS2/02:

Pre-Test: P'ost-Test with s2 c P~ ost-Test with s2  c 2

2 0 0
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Figure Ten --- Summary of Results for Representative Values of s2 from

n a 7.. Measurements to Test H: 2 < 02 - 4(10-1 0 with

a- .01, Xn.1 16.81, and .0 .005 for u2 (10)-8:

s2: 22110)-10 12.3110)-lo 8.4(10)--10 2.55110)-!o

X- (n-1) s2/a2: 33 > 16.81 18.45 > 16.81 12.6 > 16.31 3.325 > 16.81.

Decision on Ho: Reject Reject Do Not Reject Do Not Reject

p-value: .00001C.Ola .0054.011a .05>.01ma .7P,01-a0

q-value for a2. .03>.O05-e .0060.0060 .0024.00,-0 .00007<.0065,
U

One Resultant Minus .41 Minus .017% Plum 11 Plus 101 - Max
Change in Cost:

Figure Eleven --- Summary of Results for Representative VM'Iues of • from

n - Measurements to Test H: 02 e 4(10)-10 with

, .0,3.2 and .000 for 2 (10)'-:0,n-1 120.09 a 00 u

s2 : 22(10)-1l 12.3(10)-l0 8.4(10)-'c 2.65(10)-10

X2 (n-1)s/o 22 ) 13.28 12.3 < 13.23 8.4 < 13.28 2.55 < 13.28
44 > 20.09 24.6 > 20.09 16,8 < 20.09 5.1 < 20.09

Decision on H0: Reject rDo Not Reject Do Not Reject Do Not Reject
Reject Reject Do Not Reject Do Not Reject

p-value: .0002 <.01 .02 %.01 .08).01 .60.01
.000001<.O1 .002<.01 .03>.01 .8e>o'

q-value for o2 .07>.03 .026<.03 .01 <.03 .001<.03U .01>.0008 .002>.0008 .0004<.0008 .00001<.0008 ,

One Resultant Minus .7% Plus .021 Plus 21 Plus 10% * MA Y
Change in Cost: Minus .2% Minus .021 Plus .5 Plus 101 0 Max
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FORCE DEVELOPMENT TESTING AND EXPERIMENTATION
OF THE FIRE SUPPORT TEAM

Jock 0. Gryaovicki
.A=.nn E. MoKalg

Jill H. Smith
Virginia A. Kaste

-iperimental Design & Analysis Branch'
System Engin6aerliig & Concepts Analysis DivisionU.S. Army Ballistic Repearch Laborato--,yAberdeen Proving Ground, Maryland

AB ACT In April and May, 1g84, The Field Artillery Board, Ft Sill, ok ponducted
a Force Development Test and Experimentation (FDT&E) of the Fire Support Team
(FIST) concept at Ft. Riley, KS. The purpos, of the FDT&E was to test and evaluate
the effectiveness of the FIST HQ equipped with FIST vehicles and digital copnmunI•a-
tions equipment under variouq ltatical configurations, celected modes of operation end
personnel shortages. Although traditior'al mhnual data collection, methods epmploying_
human observers was used to record test data, a new ..utomatie data recordinýi tech-
nique based on the Artillery Control Environment (ACE),technology was used for the
first time in the field. Personnel from the Ballistic Research Laboratory (BRL) arsistod
in the experimental design, and were responsible for the designing, coding and testing
the computer software' for the data collection and reduction bystem.'

Thb discussions will focus on the experimental design, data reduction methodology,
the methods of analysis emproyed and a brief reporting of the results.

A. Batkground

During April and May 1084, The Fteld Artillery Board, Ft. Sill, OK conducted a
Force Development Testing and Experimentation (FDT&E) of the Fire Support Team
Headquarters (FIST IIQ) concept at Ft. Riley, KS. The ttst consisted of three iterations
of a 120-hour Scenario Oriented Recurring Evaluation System (SCORES) field exercise 4:.
that was based upon and included the mechanized infantry and armor defensive
maneuvers. The task force was confronted by an opposing force (OPFOR) of various
strengths and a jamming team. All elements were strictly controlled by tlib' test
directorate during the first two exercises. The tuird exercite was a freeplay,
uncontrolled force on force exercise.

"Personnel trom the Ballistic Research Laboratory (BRUL) designed the experiment
and assisted in the impiementation of experimeutal design methodology In the controlled
segment of the test to address a subset of the overall objectives. In addition, personnel ,..,
from the BRL were responsible for designing, coding and testing a new automatic data '.
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MAT

recording and reduction system based on the Arlillery Control Environmen~t (A(11i,'
technology. This report will focus on the experirwental design, data reduction anid
recording methodology, the methods of analysis employed and a brief discussion of the
results. The analysis for this report is based upon data obtained from the Field
Artillery Board, Ft. Sill, OK

B. Purpose

The overall purpose of the FDTkE was to evaluate the operatinrial effectiveness of
the FIST I-IQ equipped with a Fire Suipport Team vohicle (FIST V) and digital
communications, Test results will be oised by the Uvited States Army Field Artillery
School (USAFAS) to further develop FIST operational and organizational concepts.

To demonstrate this effectiveness, a study, of the FIST H4 ability to perform fire
support coordination under two modes of Forward'Obs-erver (FO) message control and
four types of FIST HQ configuratlou, while under various workloads, was conducted,

11, TEST CONCE~PT

A. Objectives

1) To determine whether or not r'IST DMD w~essage control of the FO's, in the
review and automatic communica.tion moic3 of operation, has an effect on the
FIST HQ ability to perforin flub, support toordinatlon.ý

2) To determine If the FIST HQ can perfo 'rm fira support coordinatioii: a) with
the Ground/Vehiecle Lý.er Location Designator (G/VLLD) mounted on the FIST
V with all FIST personnel prteent, b) with the (G/VLI.D mounted without the
FIST Chief, c) inside the FIST V Inu a Buttoned-up ekivironment and d) withi the
G/VLLI) dismounted from the FIST V. To dismount the G/VLLD from the FIST
V, two FIST JIQ personnel mupt dismount both the G/VLLD and its naso'cirtod
equipint-at.

3) To determine if mission workload affects the FIST HQ performance of Nie
support coordination. Mission workload was defined as the number and types of
missions the FIST HQ was requir'sd to process simultaneously. There were four
fire mlsslou types: mi~slons initiated from the nnechanlzr" infantry FO, missions
Initiated from the armor p~latoon leader (Armor) by voice, FIST HQ shooting N
COPPERHEAD nmunitiona, and missions from the FIST HQ shooting

B. Measure of Performance

A measure of performirnce (MIOP) is a response that is used to quantify thf, eifects
of the factors to be evalukst'ed. For FIST Initiated missions, it was defined as the elapsed
time from target. acquisition until thtv (fire request) messege is transmitted from the
Fin' Digital Message Device (DMD). Servrice timeo for armor missions was ihe time
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from receipt of a fire request message by the FIST HQ until transmission. The time to
service FO missions was the elapsed time from when the acknowledgment (ACK) is sent
from the FIST DMD indicating receipt of a fire request message until the message is
transmitted. This measure indicates the combined time a message spends in the FIST
DMD message queue, and the processing and decision time of the FIST HQ.

C. Scope

The first two field exercises (FEX 1, FEX 2), which were a combination of Live Fire
and Force on Force, utilized three FIST HQ and one combat observation lasing team
(COLT) attached to a mechanized infantry task force that consisted of two mechanized
infantry companies and one armor company. (See Figure .1).

The FIST HQ consisted of:

1. The Fire Support Team Chief

2. The Fire Support Team Sergeant

3. Two radio telephone operators

All members of the FIST HQ were trained in the operation of the FIST DMD, Nine 4
weeko of individual training was conducted and validated by the USAFAS. This
individual training was followed by two weeks of collective training.

D. Limitations

After receiving the initial fire request message from a FO and deciding how the
fire request should be handled, the FIST HQ routed all subsequent messages for
that fire mission through the FIST DMD in the automatic "mission mode." That
is, all subsequent messages for that fire mission were automatically routed
through the FIST DMD. Operator intervention was needed only if a message did
not get acknowledged in four transmissions.

2) Electronic Warfare was prohibited during the controlled portion of the
FDT&E.

3) Range regulations at Fort Riley prevented the G/VLLD from being employed
in a totally realistic environment. Laser designation and range finding were
allowed in only two locationa and even then had to be restricted.

4) The control cells that contained the Buttoned-up configuration were run at
night.
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COMPANY FIRE CONTROL NET (CFC)
BATTALION MORTAR FIRE DIRECTION NET (BN MTR)
FIELD ARTILLERY COMMAND FIRE NETS (CF1e CF2)
FIELD ARTILLERY FIRE DIRECTION NETS (F~l FD2)

COMPANY COMMAND NET (CO, CMD)
TASK FORCE COMMAND NET (TF CMD)

NOTE: THE TF WAS COMPOSED OF THREE SIMILARLY
ORGANIZED COMPANY TEAMS

Figure 1. Fire Support Structure.
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E. Data Collection
In addition to manual data collection methods employing human observers to

record test data, a new automatic data recording technique based on the ACE
technology was used for the first time in a field exercise. The procedure consisted of
recording digital radio traffic time coded on analog magnetic tape. Every 24 hours the
tapes were shipped to Aberdeen Proving Ground (APG), MD where IlEL personnel
received the tapes and played them back into the computer controlled message
collection and reduction system. The resulting sorted list of messages was then written
to digital magnetic tapes and shipped to Ft. Sill for analysis.

Ill. MESSAGIE COLIr•CTlON AND REDUCTION SYSTEM The major compononts of
the message collection and reduction system were

1) Bit Boxes (Tactical Communication Modems, TCM)

2) VAX 11/750 Computer

3) BRL VAX Unix Operating System

4) Message collection and reduction software

A, Hardware

Bit Boxes are microprocessor based modems which enable Tactical Fire Direction
System (TACFIRE) hardware to communicate with commercial computers, The 131t
Boxes convert Frequency Shift Keyed (FSK) variable format and fixed format TACIY1il
messages (from wire line or radio) to RS232 ASCII character format which commercial
computers can accept, and visa versa.

A DEC VAX 11/750 computer was available for use as the main computer to
support the message collection and reduction software. The computer operating system
was a BRL enhanced version of 4,2 BSD (Berkley System Distribution) Unix.

B. Software

The application software, which was written in the C programming language, hadtwo primary tasks: 1) message collection, and 2) message reduction.

The message collection program receives streams of iharacters from the Bit Boxes,
separates the streams into complete messages, records the start and end time of eacht
message, and stores this information in a computer file,

The data reduction program reads the data files created by the message collection
program, The purpose of this program is to sort the messages into fire missions. The "
result Is 3 other files that contain (1) a list of messages categorized by fire inissiont t.hirgtO,
number, (2) a list of messages believed to be associated with a fire mission but for some
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reason that mission could not be identified, (3) and a list of messages that are known
but not part of a fire mission. These lists of messages were shipped to IFt. Sill and
combined with manual data to create a comprehensive data base for analysis. For an
indepth description of the message collection and reduction system see "Field Artillery
Digital Message Collection and Reduction Software," BLT.-IMR-822, June 1984.

TV. EXPERIMENTAL, DESIGN

A, Factors

The three factors that were tested during the controlled portion of the FDT&E
were FIST Configuration, Mode of FIST DMD Control and Mission Workload.

1) FIST Employment Configuration alternatives wore:

a) G/VLLD mounted - all hatches on the FIST V were open and the
G/VLLD was mounted with the entire FIST HQ present.

b) G/VLLD mounted without FIST Chief. all hatches on the FIST V were
open and the G/VLLD 'as mounted with the FIST Chief not available.

c) G/VLLD dismounted, the G/VLLD was placed away from the vehicle
along with two of the four FIST HQ members.

d) Buttoned-Up- all hatches on the FIST V were closed and the G/VLLD
whs mounted with the entire FIST HQ present,

2) Mode of FIST DMD Control

a) Review - FIST DMD stops all initial fire request messagu, from platoon 
1

S.

FO's for the FIST HQ to review. .,', ,

b) Automatic - FIST DMD immediately forwards tll initial fire request
messages with out action by the FIST HQ.

3) Mission Workload V"

Mission workload was defined as the itumber and ty'?es of fire missions the
FIST HQ were required to process simultaneousiy. The four types of fire
mklsiono were:

1) CONV - FIST HQ shooting a conventional munition

2) CPH - FIST HQ shooting a COPPERHEAD munitiun

3) ARMOR - Missions initiated by the armor platoon leader and .

346
0. IL

~ IeeCW " g *~~ ~ "'~.'* ,g..e¶eec I t gCI'* * ",*• , '.



received by voice at the FIST 11Q.

4) FO - Missions initiated by the mechanized infantry FO and
transmitted digitally to the FIST HQ.

Based on seven combinations of mission types, thirteen categories of
mission workloads were defined. They are:

TABLE 1. MISSION WORKLOAD

FIRE MISSIONS MISSION
CATEGORY PROCESSED SIMULTANEOUSLY 'Yls

a 1CPH CPII
b 1 FO + I CONV CONV

1 FO + 1 CONV FO
d IARMOR+ lCONV CONV
e 1 ARMOR + I CONV ARMOR
f I FO + I CPH CPH
g 1 FO + 1 CPH FO
h I FO + I ARMOR + I CPH CPH
I1 FO+ 1 ARMOR+ 1CPH ARMOR'

I FO 4- 1 ARMOR + I CPH FO
k 2 FOS FO
I I ARMOR + 2 FOs FO

m 1 ARMOR + 9 FOs .ARMOR

B. Design Matrix

It was decided that the smallest period of time reasonable to test any one of the
treatment combinations was two hours. A factorial design was constructed with cacti
experimental combination being tested in a random order. This scheme assured that the
effect of each of the experimental combinations on the FIST IIQ ability to perform fire
support coordination could be measured. The FIST HQ were tested under all of the
experimental combinations and the design was repeated for each of the two controlled
iterations of the FDT&E. The design matrix is presented in Table 2.

V. STATISTICAL ANALYSIS The analysis for this section is based on data reduced by
the Field Artillery Board, Ft. Sill, OK, which wa, a combination of manual data
collected by human observers and digital data that was sorted by the message collection
and reduction system. This section is intended to be a supplement to the data analysis
conducted by the Field Artillery Board and only focuses on several key factors rtnd their
associated levels. Unfortunately, the Buttoned-up level of the FIST Employment
Configuration factor was not available in this subset of the FDT&E data base, but will
be analyzed in a future BRL report.
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A, Transformation

As the data was being checked for completeness, it was noted that the distribution
of service time was skewed and that the variances of the observations under various
experimental conditions were different. Further investigation of the data revealed a
positive correlation between the cell standard deviations and the cell means,
Correlation between the standard deviations and cell means is often accompanied by
marked non-normality and non-homogeneity of variance, and indicates that the
particular form of the original observations is unsuitable for Analysis of Variance
(ANOVA) procedures.

However, a transformation can be determined which makes the standard deviation
independent of the mean, corrects non-homogeneity and also results in the observations
being distributed more normally. In general, il a significant functional relationship
between the standard deviations and the group means cans be ae'term'ned, then the
transformation is the integral of the reciprocal of this functional relatlinship, Using this
procedure, the following transformation was developed:

1.7 In (18,9 + .56 (service time) )

The transformed data became more normal and the homogeneity of variance

among the experimental conditions was improved,

B. Analysis Of Variance

An analysis of variance procedure was performed on the transformed data with one
slight modification to this procedure due to unequal experimental group sizes, The sum
of squares for all terms in the model, except the error term, was weighted by the
harmonic mean. The ANOVA is presented in Table 3. A star next to the F-ratio
indicates the factor is significant at the alpha level of ,05. Since this analysis assumes a
fixed effects model, the denominator for all F-ratios is the pooled error term.

Since the ANOVA was performed on the transformed data, it was decided that ,L
comparisons of medians, calculated on observed service times, would be more
meaningful than comparing transformed means.

C. Results

The most significant term In the analysis was mission workload. One reason for
this significance is that it took substantially less tihn' to service fire request messages
from mechanized infantry FO missions than either the FIST I9 missions.
(COPPERHEAD or Conventional) or Armor missions, In both FIST I)MD control
modes, the FIST HQ initiated fire request messages require data Input, review, and
transmittal. Armor messages, which are received by voice, must be reviewed and input
as digital messages by the FIST HQ; whereas the digital FO fire requests require only
review and transmittal in the review mode of FO control and no processing at all in the
automatic mode,
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TABLE 3. ANALYSIS OF VARIANCE
(SERVICE TIME)

DEGREES OF SUM OF MEAN F
SOURCE FREEDOM SQUARES SQUARE RATIO

Mission Workload 12 101.00 8.42 10.60*

Mode 1 5.65 5.65 7.14*

Configuration 2 0,025 0.01 <1

Mission Workload x 12 9.21 0.77 < I
Mode

Mission Workload x 24 13.43 0.56 < 1
Configuration

Configuration x 2 0.08 0.04 < I
Mode

Mission Workload x 24 12.33 0.51 < 1
Mode x Configuration-

Pooled Error 461 365,00_ 0.70

Another interesting result observed was that In mission combinations in which
Armor missions were processed, Armor missions had a longer service time than any
other mission type. This trend stems to indicate that it takes the FIST HQ longer to
process voice initiated fire request messages than to initiate his own or service FO
missions. This result is not surprising since it takes longer to input a message manually
than to receive one digitally. These trends were consistent in both the Automatic and
Review modes as shown in Table 4.

The number of missions processed simultaneously also affected FIST IIQ service'-.%
time. In plotting the median service time for the mechanized infantry FO fire missions
in review mode (See Figure 2), one can see that it takes the FIST HQ longer to service
FO missions when the FIST HQ are also initiating COPPERHEAD missions and
receiving a armor message than when the FIST IIQ ax- ;ust servicing FO missions and .,...'"
shooting COPeEIZIlEAD. In addition, the FIST IIQ service time for FO fire request
messages is shorter when they are also initiating a conventional mission as opposed to
also shooting COPPERHEAD. This result is not surprising. When the FIST HQ is
initiating a COPPERHEAD mission while in the review mode, the FIST DMD operator
functions are disabled after sending a FO Command (Fire) or a Fire Request Quick
Messago and no action can be taken by the FIST DMD operator until the X button is Ad
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PO MISSIONS BY MISSION WORKLORO (REVIEW MODE)

1.0- HMEDIAN SERVICE TIME

2n2.0 +

20.0- o3 V- FIST CON÷F0
- FIST CHD+FO

18.0- -FIST CHD+FO+AIROMO
12-6O
166. ARMOR ÷FO

14.0-

10.0~o,

CON4o CHD+FO CHD+FO+ AINOR 240 AHOU 4.

MISSION WORKLOAD

Figure 2. Mechanized Infantry F0 Initiated Messagos By Workload.
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TABLE 4. MISSION WORILOAI) DY MODE
(MEDIAN SERVICE TIME)

(SEOONDS)

Mode

FIRE MISSION IMISSION WORKLOAD Review Auto

OPH -CPH 55 35

CPH FO + CH 11 44

CPH F0 + ARMOR +CPI1 6 34

7ONY AROR + CON Y 77 74Corr I+OR+CP1Ni 55j7
FO FO__+ ________2

FO PQ .. 6...q +wQm. 20

F0 2 FOs 22 2

2O -~ F + ARMOR 5 2

ARMOR' ARMOR + CONV' 70 98

A1HMOih FO + A.RMOR + C~ii 81 60

ARMOR1 A.RM OR + 2 FOs 58 37

prebsed to end the COP~PERHELAD miision. Surprisingly, the FIST HQ spent the
longest time serv'icing nmech~nized infantry FO missions w review mode, when they were

* not initiating or reviewing any other missioa types. Ir. this mission workload (2-FOs),
the FIST H-Q only responsibility was to review the~ two messages received from his
mechanized infantry FOs. FIST personnel spent a loC of time reviewing, changing, and

* deciding it the initial fire request message should be nent to TACFIRE or to one of their
Ice&, resource.4, such as the battalion mortar platoon.
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From Figure 3, one can see that it took more time for the FIST HQ to service
armor messages when they were also shooting a COPPERHIAD or conventional mission
than when they were only reviewing a mechanized infantry FO messages and serving
armor miasions. This trend is consistent with both the automatic and review FIST
DMD control mode. N"o

In the automatic control mode, all initial fire request ruessages received by the FIST
HQ are automatically forwarded to their destination. Initiating messages in the review
mode must be passed by the FIST DMD operator before they can be transmitted.
Therefore, one could expect the FIST DMD mode of control to signilcantly affect the
time it takes to service digitrl fire request messages. The ANOVA table revealed that
the Mode of FIST DMD Control was significant.

The percent of all messaguw processed by service time in the automatic and review
modes are shown in Figures 4 and 5, respectively. The median service time for the
automatic mode was small, 7.0 seconds, when compared to the median service time of
29.0 secondb to service messages in the review mode. For mechanized infantry FO
missions, the median service time in the review mode ranged between 5.0 and 22.0

'seconds over all "vorkloads. However, W the automatic mode, the median service time
for all workloads wau 2.0 seconds. This trend was not as prevalent for messages
initiated by the FIST .Q or messages received by voice from the armor as depicted in
Table 4.

1- is worth noting that FIST Employment Configuration was not statistically
significant. The FIST's ability to service FO and ARMOR missions as well as initiate
his own mismions was not affected by the various eonflgurations. This implies that the
FIST can perform efficient fire support coordination when the FIST Chief is not present
or when two members of the FIST are not available (due to the G/VLLD being
dismounuted). However, this infers nothing about the quality of the decision being made.

One puzzling result was that the median service time for a FIST HQ to service
COPPERHEAD missions wnile in review mode and for mission workload (FO +
ARMOR + CPH) was only 6.0 seconds and only 11.0 seconds for workload (FIST FO +
CPH). Looking at the service time distribution for these two categories, one notes a
bimodal distribution which may indicate the presence of a lurking variable.

Cluster analysis was used to try to categorize the COPPERHEAD missions into
two groups: This is a multivariate statistical technique in which COPPERHEAD
missions were separated into groups based on the minimization of variance within
groups and the minimization of the distance between groups. A difference in values
ar'ong groups from different COPPERHEAD missiono a said to exist if the hypothesis h

of equalihy of means among groups is rejected by an F-test with a significance level of
.05. The number of groups in which to categorize the COPPERHEAD missions was not
specified.

Using cluster analysis on the COPPERHEAD mission service time, two populations
were identified. One group had a median service time of 8.0 seconds and a range .
between J.0 and 32.0 seconds. The other group centered at 56.0 seconds and ranged
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Figure 4. Percent of Messages Processed By Service Time in Automatic Mode.
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between 34.0 and 100.0 seconds. The groups were statistically different at a significance
level of .05. Based on the above categorization scheme, the analysis was redone with the
two types of COPPERHEAD missions. This resulted in workload having sixteen
categories. The conclusions remained unchanged from the original analysis. Mission
Workload and Mode of FIST DMD Control were the only factors determined to
significantly affect FIST service time especially in regard to FO missions. The median
service time for the two groups of COPPERHEAD missions by Mode of FIST DMD
Control and Mission Workload are given in Table 5. The median service time for the
group with the smaller median service time ranged between 6.0 and 9.0 seconds while
the second group ranged between 45.0 and 92.0 seconds. No statistical differences were
found between the review and automatic modes of FIST DMD Control for either group.
Similarly, Mission Workload had no effect on either category of COPPERHEAD
missions.

There are several possible reasons as to why there are two categories of
COPPERHEAD mission service time. One reason is that terraiu conditions will strongly
influence COPPERHEAD service time. Another reason is that there are two types of
COPPERHEAD missions (priority and target of opportunity) and the data from Ft. Sill
did not categorize these two types. Priority COPPERHEAD missions are preplanned *

missions with preassigned targets. The mission data is stored until the target appears;
the mission is then reactivated and carried to its conclusion. A target of opportunity
mission is not a planned mission but occurs when a target appears at an opportune time
and place. Target of opportunity missions require a longer processing time by the FIST
than priority COPPERHFAD missions once the target is acquired.

TABLE 5. COPPERHEAD MISSIONS
(REVIEW & AUTOMATIC)
(MEDIAN SERVICE TIME)

MODE MISSION WORKLOAD GROUP I GROUP 2

CPH 7.0 73.0

REVIEW FO + CPH 7.0 92.0

FO + ARMOR +CPH 8&0 45.0

CPtt 7.0 68.5

AUTOMATIC FO + CPH 8.0 70.0

FO + ARMOR + CPH 0.0 66.0
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VI. CONCLUSIONS Based on the results of the analysis of the limited database
obtained from the Field Artillery Board, the FIST HQ demonstrated its ability to
perform fire support coordination. The FIST IHQ ability to service fire missions was not
affected by different FIST IIQ configurations. The FIST did perform efficient fire ,.:..
support coordinations when the FIST Chief was not present and when two members of
the FIST were not available because the G/VLLD was dismounted. Although Mission c.:'.,
Workload and Mode of FO Control were significant, the largest median service time
observed was only 98.0 seconds. This occurred when the FIST HQ had to input the
voice messages from the Armor.

The number and types of missions processed simultaneously influenced the FIST
ItQ ability to service FO and Armor missions. However, Mission Workload did not
affect the two types of COPPERHEAD missions thmat were categorized using cluster
analysis. Based on this statistical technique, COPPERHEAD missions were shown to
not be affected by the FIST DMI) mode of control. In fact, FIST DMD mode of control
only affected the mechanized infantry FO missions, :

Finally, the automatic reduction system proved to be a useful tool for data ,.
collection and reduction of field data and the ability to perform a controlled experiment ,.
during a field test was demnonstrated with overwhelming success. However, it
demonstrates the need for more sophisticated MOP's than simply speed of service.

VII. ACKNOWLEDGEMENTS The authors wish to express their appreciation to The
Fire Support and Target Acquisition Directorate of the HEL, The Artillery Systems
Concepts Branch of the BRL and to Annette Wiseman for formatting this report. i.-..

3, .544

'I.I Iiii

I l,

358 •"'.1*

l'l 'l~ '"J 'l''m' .• 0 'l lbl l~ l a~• .• . I •, kiP ill II i' 'l~ll " k~lll'l llil~ill i ikll I II 41.1 111.4.l 'l . I . F .I I . . i111 '.i tlh .i' Ifnil Im• *" Vip 4b



P.-mm-

A METIHOD FOR ESTIMATING DETERMINISTIC WA'TiRR ••,VI:'
CONTAMINATED WIIH RANDOM BACKGROUND NO)ISIK

Michael B. Andrew

U.S. Army Engineer Waterways Experlimot fit nt'li,'
Coastal Ijpgineering Research Center

P.O. Box 631
Viccksburlo KS '39L80
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INTRODUCTION ,

I,. The purpose of this study was to explore methods for predicting iind

reducing the error in neasured explosion wave data due to the presence of n

wind generated random isea suface. In this analysis, the model to be. used for

representing the mixture of random and deterministic waves is the linear

superposition, or adding together, of explosion wave and random waive amplittid-

functions. An analysis, method based on the linear superposition model

requires the assumption that frequency components of interest in the explosion

generated waves are conltained in a certain frequency band. Errors resultvn

from the random wave frequencies outside the specified band of interest ars.,

then eliminated by means of band pass filters. Resulting estimates for the

explosion wave-form will be biased by smoothing inherent in the filtering

process. This bias effect is reduced by observing the affect that the

filtering process has on theoretical models for explosion waves. 71teoreticAl

models have been showt to correspond well with measured data (Le Mehaute 1971)

making them useful as a muans of estimating bias due to the filtering process.

S Correction factors fow, a specific filter and set of explosion wave parameters

are computed and u.sed to remove filter bias from estimates of maximum

explosion wave amplitude.

2. Expected error due to random background noise can be predicted :4

prior to a test using the energy spectrum of the sea surface. This makes it •

possible to make GO cor NO GO decisions prior to testing based on the roughness

of the sea surface. The GO/NO GO model developed here it based on the

parameterized sea surface spectrum developed by Ochi and Hubble (1976). Art

interactive computer program for predicting expected background error is

developed and exampLes of its usage are presented in a later section.

Wave mixture model

3. Let the discrete time series associated with the random sea surface

be denoted by xn and the discrete version of the explosion wave time series

by Pn for n o O, 1, t.., N - I with a time increment of At between

* successive numbers of the two time series. Linear superposition of the two

"time series produces

Pon Pn + Xn 0 nO, 1, ... ,1N- N ,-
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It is assumed that each variable in the time series x is distributed as a.4

Gaussian random va'riable with mean zero and variance a * The time series

Pon represents the observed mixture of noise and explosion waves. This

variable Pen is also distributed Gausesan with mean p. and variance o2 .

The discrete fourier transform (DFT) for., Pon to

N- 1
P at l -i2wmn/N 1.2

n 0

or

Pom P m + Xm 1.3

Where

N- I -inIN
P • At P e1 1.4
m n 0 on

N - I - Z m / Z ,
Xm t xae 2mn/N1.5

n 0

are the DFTs for and xn respectively. Subscript m refers to frequency

values f - mAt for At - 1/(NAit).

4, Define the estimate of the DFT for P, to be

~m -om Urn ,m- O, 1, -- , N- 1 1.6

for
Dm - 1,0, M 1 - m M 2

1.0, N - M2 m N M

0,0, all other values of m 1.7

Values f M I Af and f 2  M 2 Af define the frequency interval of intereot

for the data to be analyzed. Than, the estimate for the time series Pn is
A1

the inverse DFT of Pm * given by

A N I2wmn/N
P &fA • P D a 1.8n mD om m
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Note that since p is a linear combination of linear combinations of ",

Ogussian random variAbles Pon , n w 0, 1, --- , N - I then pn is nA1o

distributed Gaus.sian. Substituting equation 1.3 into 1.8, the estimatetd ti.me

series can be rewritteni as:

Pnb Pn on 1 en t..Q

where

N- 1
Sn Af pm (Din - 1.0) 1i2wmn/N 1. 10

*Af X D ainr/N11
m 0

51. The term 1 is referrad to as the ectimate bias term and c it

called the randotn term. Statistical expectation of p s' is

Elyn 0.p pt + AO 1.12

since El] 1 0,0 and since the other terius are deterministic. Variability
of the estimate Pn is given by its variance, which is

an =VO A S, m D 1.13

m 0

where Sm is the discrete version of the power spectral density of the randomn

sea surface. Standard de'-iation of p. is

%m 4 4c1~1.14/"1"

6. Assuming that an and n are known, then the (l-a/2) x 100

percent confidence interval for Pn :-

An On %n I "a/2 An "O1n 4 n /21 l.a/
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where Z is the 1 - a/2 percentage point for a standard norm.al

distribution.

7. In an applied setting, a n is not a known quantity; however, It

can be estimated by replacing Sm with S , the estimated energy spectra-. I
density in equation 1.13.

8. The bias term 0 n will be estimated by observing the affect that

filtering has on functions that are used to model explosion wave time sertc.1s

for given explosive yields, water depths, and measurement location.

9. To simplify the discussion of the random error in later parts of,

this report, the bias term 0I will be included in estimates of the explosion

-wave time series and the unbiased estimate of, pý will then be

A.A

Pun Pn" n 1.16

with confidence interval

P nI - el2 1.17un % l /
Explosion wave model-.I.

10. There are several functions that are used to model explosion wave

amplitude. The function used here for testing and bias estimation is the most

suitable of the available models (Le HMhaut@ 1971). Explosion wave amplitude*

as a function of time and distance from the explosion is written (dimension-

less form)

n(r,t)- A coo (Kr - t(tanh K)) 1 / 2  1.18

where

Au !-R J KR) 1.19rK3 -

and

R - radius of initial cavitation

n - amplitude of initial cavitation

K - wave number

r - distance at which amplitude is derived

t - time
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V (K) - wave group velocity

J 3 (KR) = Bessel function of the first kind of order 3

11. The parameters listed above are dimensionless resulting in a

dimensionless value for equation 1.18. In order to obtain the dimensiotin]

version, equation 1.18 is multiplied by the water depth at which the expilosimSIt

occurs. Equation 1.18 is evaluated numerically for given values of the

parameters to provide test data for the analysis techniques of this study.

Random noise simulation

12. Frequency domain simulation of Gaussian random time series mlken

use of the statistical identities between linear combinations of Gaussian

variables. That is, any linear combination of independent Gaussian random

variables is also Gaussian with mean and variance that are linear combinations

of the means and variances of the original random variables. Discrete Fourier

Transform (DFT) pairs are linear combinations and, therefore, have identities

described above. A Gaussian time series with a given thooretical power

spectrum'can be shown to have a DFT that is Gaussian with a variance that is

related to the power spectrum of the time series. 7hat'is, if Xn.,
2

n - 0, 1, ., , N - 1 is Gaussian with mean zero and variance a and results

from a random process with power spectral density i(f), then the DFT of Xn

given by Um - i Vm has real and imaginary parts Um , Vm that are also mean

zero Gaussian, with variances

Nrt 8 m -O, /2

SNLt• S 0 <m< N/2 2.1

L. 2

0 m 0, N/2Var(Vm)-,
:Nt 8 0 < m < N/2 22

2

for 8r the discrete version of the power spectruwi S(f) It is also known

that (Um r Vm) and (Um, , Vm,) are statistically independent for mlm' 0 <

m, m' < N/2, and UM is independent of Vm, for all m, m'. 1he values for

m > N/2 can be found by the identity Um - U%_m and Vm . VNlm
IV.
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13. The steps for simulating a Gaussian random time series with power

spectral density S(f) are:

(1) Generate two statistically independent sequences of

independent mean zero Gaussian random numbers, say, XR.1 and XLm for 4A

0 < m < N/2

(2) L et 
U n X R M t - 1/

S 1/2 0 < m <N/2

Vm a Xm (N&t-.

m 4m

m m OP N/2

Vm

(3) Appl DFT t

to obtain the resulting times series X. j n Op 0 ll ,.. N - 1 of equation

1.5. Finally, add the time series from equation 1.18 to Xnto obtain the W

desired mixture of a Gaussian random sea surface with explosion generated

water waves.

Go/No GO analysis

14. Equation 1.13 gives the expected error due to the presence of

random background noise in the measured explosion wave time history. The

associated confidence interval of equation 1.15 represents the interval that ~ '

will capture the true explosion wave time history, P.~ , (1 - */2) x 100

.4,,,.°,

percent of the time. if the power spectral density of the random sea surface

is known or specified by one of the commonly used parametric forms, then

equations 1.13 through 1.17 can be computed to prnvide an estimate of the

statistical error to be expected in filtered explosion wave.

15. A parameterized spectrum known as the Ochi Hubble (1976) six

parameter spectrum wa chosen for use in this analysis,. This six parameter

spectrum includem a spectral peakedness parameter that determines the narrow
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bandedneas of the spectrum. A peakedn#se parameter of 1.0 is used here

reau.•ting in a spectrum that is equivalent to Bre'.schnieder and Pierson

Mock-.owItc type spe,:tral densities. Parameters needed for input to the

parametarized ,ipectrum are the mean period for long period waves generated by
distant storms (swell) given by Ts , mean period for locnlly generated

waves , significant wave height for swell He , and significant wave height

for sea R , Figuru 1 is a plot of the quantity 0n Z1 - •/2 from equation

1,,17 fur varying values of spectral parameters. Examples and instructions for k.

tbf GO/NO GO device program are listed in Appendix A. s k
iyn•hohtic data aoalysis

)6. Ft-"'atono were computed for varying measurement distances from

the explosion sourco,. .Distance values were 500, 800, 1,000, and 2,000 ft.

There were five simulations for each location, each representing a different

random, backgrnund wave sequence. Random background waves were generated

accordin. to the method of section 4 using an Ochi Rubble type bimodal

spectrum with ignificant height.for swell equal to 1.0 ft, significant height

for local seas equal to .75 ft, mean period for swell at 12.5 sac, and mean

period for seas at 5 sec.

17. Two methods were used for estimating explosion wave time

histories. The first being the boxcar type filter described in section 2; the

second method was an 8 pole Butterworth digital filter with maximum flatness

in the passband and stop band.

18. Plots of theoretical, observed, and estimated time series along

with random noite xn from equation 1.1, random error En from equation
1.11, and bias •nfrom equation 1.10 a.,e presented in Appendix B. Of

particular interest is the maximum wave amplitude for each simulation. Values

for theoretical, observed and estimated maximum wave amplitudes are given in

Table 1 and Uable T1. The tables are also include the associated values for ."02 2 , .a sea surface variance or mean square error, and a E2 error variance or

mean square of the random error terw cn from equation 1.11. The theoretical

value for *2 of equation 1.13 from the GO/NO GO example of Appendix A is
2 n2 2
a n 0.039 of Since a is the sample variance .nA a2 is the theoretical

variance of the er.plosion wave estimate time series, their values should be

Note values for a2 generally scatter around 0.039. Average

CC
values for a02 and a 2 over each set of meanty simulation demonstrate that
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Iwo

TABLE 1
Boxcar Filter

Smax Pmax obsmax a2 9
____ ____ - - Ammm

500 9.07 8.87 8.74 .096 .040

500 9.07 9.06 8.85 .100 .042

500 9.07 9160 9.72 .103 .044

Soo 9.07 8.99 8.96 .102 .053

500 T.07 8.74 8.43 .092 .042

800 5.59 5.37 5.58* .095 .039

800 5,59 5.55 5.74 .102 .043

800 5.59 5.50 5.36 .084 .043

800 5.59 5.66 5.32 .097 .040

.800 5.59 5k29- 5455* l088 .040

1000 4.15 4.25 4.27 .094 .039

1000 4.15 4.55 4.67 .103, '.031

1000 4.15 3.96 4.12* .103 .044
1000 4.15 3.87 3.88* .095 .044

1000 4.15 3.85 4.25* .096 .040

2000 2.25 2.33 2.18* .102 .046

2000 2.25 2.07 1.68 .106 .048

2000 2.25 2.47 1.96 .091 .039

2000 2.25 2.26 2.38 .103 .038

2000 2.25 2.29 2.37 .109 .050

S.... . . . .. . .. .. . ... . .. ..

MPax a Theoretical maximum explosion wave amplitude.

Pmax " Estimated uaxtmum explosion wave amplitude. 1ý 'I-,

P m Observed maxima explosion wave amplitude.

Estimated wave amplitude is worse than observed.
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TABLE II

Butter•orth Filter

R P max Pma MA obsmax 2 a
500 9.07 8.97 8.63 .100 .027

500 9.07 9.04 8.74 .099 .02'

500 9.07 9.07 8.93 .096 ,029

500 9.07 9.00 8.76 .092 .630

500 9.07 9.00 8.58 .090 .030

800 5.59 5.55 5.71. .091 .030'

800 5.59 5.35 5.16 .102 .030
800 5.59 5.66 5.70 210. .029

800 5.59 5.78 6.10 .090 .028

800 5.59 5.62 5.67 .094 .030

1000 4.15 4.55 4.66 .103 .031

1000 4.15 4.39 4.45 .087 .027

1000 4.15 3.76 3.76* .106 .033

1000 4.15 3.94 3.81 .100 .032

1000 4.15 4.39 4.44 .090 .025

2000 2.25 2.16 2.06 .092 .028

2000 2.25 2.42 2.10* .095 .028

2000 2.25 1.96 1.89 .100 .031

2000 2.25 2.06 1.61 .095 .025

2000 2.25 2.30 2.11 .095 .028

:.:,
I. £ 4"-

P - Theoretical maximum explosion wave amplitude.
.Max
P - Estimated maximum explosion wave amplitude.

Pobsmax " Observed maximum explosion wave amplitude. *:,,

* Estimated wave amplitude is worse than observed.
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the Butterworth filter does better than the Boxcar in reducing th ()evrol 0.

estimate error.

(1) Boxcar

Average (02) 0.098

2Average o€ 0.042

(2) Butterwurth

Averasn (p21 = 0,096

2Average a 0.029

19. Boxcar tilter estimates are closer to the theoretical value (f rth,
A.

maximum wave amplitude than the observed maximum about 70 percent of the

time. The Auttfirworth does better than no filter 90 percent of the time.
SResults and conclusions

20. 'Random background noise effects on measured explosion wave timei~

series can be reduced by means of band pass filter techniques. Ibe
Butterworth type filter tends to do a better job at reducing error thain, a

Boxcar filter in frequency space.

21. The estimate error for the filtered explosion wave estimates can ho
predicted using the power spectral density of the background sea Rurface. Iii

this way, GO or NO/GO decisions can be made during testing based on sea

surface conditions at the time.
22, A GO or NO/GO computer program is given along withi Helf exptatinory .. ,

documentation in Appendix A. The' program is designed to provide quick eiasy.

error predictions using any computer that uses FORTRAN.
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APPENDIX A

Appendix A consists of the listings for the 00/NO GO computer progpram~ and a~n

example of its usage.

A- I
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II '

GO NO GO COMPUTER PROGRAM

The GO NO GO program was developed on the Honeywell DPS-I system at the
Waterways Experiment Station. The program is written in standard FORTRAN
that is easily adapted to any system that supports standard FORTRAN IV.
There may be some minor changes in the input and output conventions and line
numbaring. For DEC VAX systems the PRINT commands should be replaced by
PRINT * commands and the line numbers removed.

I,

44
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'.,. m %. .

I,. .,.

loC PROGRAM GO NO GO
20 F1-.08
30 F2=.4
40 PRINT,"THIS PROGRAM COMPUTES THE EXPECTED ERROR FOR A"l
50 PRINT,"DETERMINISTIC WAVEFORM THAT IS CONTAMINATED WITH"
60 PRINTp,"GAUSSIAN RANDOM NOISE"
70 PRINT,"THE INPUT PARAMETERS ARE THE FOUR PARAMETERS"
80 PRINT,"ASSOCIATED WITH THE WAVE SPECTRUM FOR A MIXTURE"
90 PRINT,"OF LONG PERIOD SWELL AND LOCALLY GENERATED SEAS"
100 PRINT,"THE INPUT UNITS DETERMINE THE UNITS OF THE OUTPUT"
110 PRINT,"THE PARAMETERS ARE:"
£20 PRINT,"TS w MEAN PERIOD FOR SWELL"'
130 PRINT,"TW - MEAN PERIOD FOR SEAS" .

140 PRINT,"HS a SIGNIFICANT WAVE HEIGHT FOR aWELL"
140 PRINT," HW SIGNIFICANT WAVE HEIGHT FOA WEA"
160 PRINT,"IF YOU WISH TO RUN THIS PROGRAM TYPE 1 "
170 PRINT,"AT THE PROMPT FOLLOWED bY A CARRIAGM RETURN"
180 PRINT,"OTHERWISE TYPE 0 FOLLOWEP BY A CARRIAGE RETURN"' "..,X
190 READIRUN
200 IF(IRUN.NE.1)STOP
210 5 PRINT,"TYPE THE WAVE SPECTRUM PARAMETERS ONE TO A LINE" .

220 PRINT,"ACCORDING TO THE PROMPT MESSAGES"'
230 6 PRINTI'TYPE THE MEAN PERIOD FOR SWELL"
140 READfTS ..

250 XF(TS.GE.5.0)GO To 7
260 PRINT,"ILLEGAL VALUE FOR TS, RETYPE"
270 GO TO 6
280 7 PRINT,"TYPE THE MEAN PERIOD FOR SEAS"
290 READ,TW
300 IF(TW.GT.0.0.AND.TW.LT.10.0) GO TO 8
310 PRINT,"ILLEGAL VALUE FOR TW, RETYPE"
320 GO TO7
330 8 PRINT,"TYPE THE SIGNIFICANT HEIGHT FOR SWELL"
340 READ,HS
350 IF(HS.GT.O0.) GO TO 9
360 PRINT,"ILLEGAL VALUE FOR HS, RETYPE" "
370 GO TOB8
380 9 PRINT,"TYPE THE SIGNIFICANT HEIGHT FOR SEA"
390 READ,HW
400 IF(HW.GT.0.0)GO TO 10
410 PRINT,"ILLEGAL VALUE FOR HW, RETYPE"
420 GO TO 9
430 10 PRINT,"THE DEFAULT VALUES FOR THE FREQUENCY BAND OF"
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440 PRINTIOTHE DETERMINISTIC WAVEFORM ARE :"

450 PRINTUF1 " ",.F," F2 w "#F2
460 PRINTUIF YOU WISH TO RESET THE VALUES FOR Fl AND F2"1
470 PRINT, "TYPE 1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE"
480 PRINT,*TYPE 0 FOLLOWED BY A CARRIAGE RETURN"
490 READ, ICHNO
500 IF(ICHNG.NE.1)GO TO 15
510 PRINT,'TYPE THE NEW VALUE FOR Fl"
520 READF1
530 PRINTwTYPE THE NEW VALUE FOR F2"
540 READF2
550 15 CONTINUE
560 PRINT,"PROGRAM IS RUNNING PLEASE WATT"
570 PRINT," - "
571C COMPUTE THE ERROR THEN ADJUST BY THE STANDARD
572C NORMAL PERCENTAGE POINT TO OBTAIN A 90 PERCENT
573C CONFIDENCE LIMIT.
580 CALL ERRP(F1,F2,TSTWHSHWE)
590 ERRORuSQRT(E)
600 CONaI.645*ERROR
610 PRINT,"THE EXPECTED STANDARD DEVIATION FOR THE"
620 PRINT,"ESTIMATE OF THE DETERMINISTIC WAVEFORM IS "
630 PRINT,"APPROXIMATELY S a ",ERROR
640
650 PRINT,"THE 90 PERCENT CONFIDENCE INTERVAL FOR THE ESTIMATE"
660 PRINT,"IS PLUS OR MINUS THE VALUE C m ",CON
670 PRINT,**
680 PRINT,"IF YOU WISH TO OBTAIN ANOTHER SET OF VALUES TYPE"
690 PRINT,"1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE TYPE 0"
700 PRINT,"THEN A CARRIAGE RETURN"
710 READIRUN
720 IF(IRUN.NE.1) STOP
730 GO TO 5
740 END

S.. ,',

A.
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750 SUBROUTINE ERRP(FlF2,TS,TWHSHWE)

751C THIS SUBROUTINE COMPUTES THE AREA UNDER AN OCHI-
752C HUBBLE TYPE SPECTRUM BETWEEN THE FREQUENCY VALUES
753C Fl AND F2 FOR INPUT PARLAMETERS,
754C755C
755C TS a MEAN PERIOD FOR SWELL
755C TW a MEAN PERIOD FOR LOCAL SEAS
755C HS a SIGNIFICANT WAVE HEIGHT FOR SWELL
755C HW m SIGNIPICANT WAVE HEIGHT FOR LOCAL SEAS
755C
75 5C7******* ******************************I***************************

760 DELF=(F2-Fl)/100.6
770 'SUM0.0
780 DO 10 Iwl,i00
790 F.F1+(I-I)*DELF
800 SUM-SUM+SPEC(TSHS ,F)+SPEC(TWHWF)
810 10 CONTINUE
820 ENSUM*DELF
830' RETURN
840 END
850 FUNCTION SPEC(TtHPF)851C***** ******** *****************************,*** **** *

860C COMPUTES THE OCHI-HUBBLE TYPE SPECTRUM FOR
861C PARAMETERS,
862C
862C T a MEAN PERIOD
862C H • SIGNIFICANT WAVE HEIGHT
86 2C8,2C* ********* ******* ************************ ******** .*•.

860 A=(5./(4.*T**4H
870 B-A*((H/4.)**2)/(F**.)
880 ARG=-A/(F**4.)
890 IF(ARG.GE.-50.0) GO TO 5
900 SPECU0.0
910 RETURN
920 5 SPECu4.0*B*EXP(ARG)
930 RETURN940 END

A5•
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K

GO/NO GO EXAMPLE

The GO/NO GO example begins with an FERN command. This command is specific to

the Honeywell DPS-I system and means $et the program GO NO, compile it, nrid

run It. The rest of the example to typical interactive session with thu GO/rio

GO package.

Ib.%: '.~

I,•. 1

Ae,

A6
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-FRN GONO
THIS PROGRAM COMPUTES THE EXPECTED ERROR FOR A
DETERMINISTIC WAVEFORM THAT IS CONTAMINATED WITH
GAUSSIAN RANDOM NOISE
THE INPUT PARAMETERS ARE THE FOUR PJRAMETERS
ASSOCIATED WITH THE WAVE SPECTRUM FOR A MIXTURE
OF LONG PERIOD SWELL AND LOCALLY GENERATED SEAS
THE INPUT UNITS DETERMINE THE UNITS OF THE OUTPUT
THE PARAMETERS ARES
TS a MEAN PERIOD FOR SWELL
TW' MEAN PERIOD FOR SEAS
HS a SIGNIFICANT WAVE HEIGHT FOR SWELL
HW w SIGNIFICANTWAVE HEIGHT FOR SSA
IF YOU WISH TO RUN THIS PROGRAM TYPE 1
AT THE PROMPT FOLLOWED BY A CARRIAGE RETURN
OTHERWISE TYPE 0 FOLLOWED BY A CARRIAGE RETURN

TYPE THE WAVE SPECTRUM PARAMETERS ONE TO A LIN6'
ACCORDING TO THE PROMPT MESSAGES
TYPE THE MEAN PERIOD FOR SWELL
.12.5
TYPE THE MEAN PERIOD FOR SEAS
"TP T0 SFCN H T S
TYPE THE SIGNIFICANT HEIGHT FOR SWELL

TYPE THfE SIGNIWICANT HEIGHT FOR SI!,A
- .75
THE DEFAULT VALUES FOR THE FREQUENCY BAND OF
THE DETERMINISTIC WAV4FORM ARE ,
Fl 0.00000OOE-01 F2 w 0.40000000E 00
IF YOU WISH TO RESET THE VALUES FOR El AND F2
TYPE 1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE
TYPE 0 FOLLOWED BY A CARRIAGE RETURN

TYPE TH NEW VALE FOR Fl hIfI

W.11 .

"TYPE THE NEW VALUE FOR F2
,.25
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PROGRAM IS RUNNING PLEASE WAIT

THE EXPECTED STANDARD DEVIATION FOR THE
ESTIMATE OF THE DETERMINISTIC WAVEFORM IS
APPROXIMATELY S 0 0.19739283E 00********************k*****h*** *****;x_

THE 90 PERCENT CONFIDENCE INTERVAL FOR THE ESTIMATE
IS PLUS OR MINUS THE VALUE C - 0.32471121E 00

IF YOU WISH TO OBTAIN ANOTHER SET OF VALUES TYPE
1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE TYPE 0
THEN A CARRIAGE RETURN

9 *1
TYPE THE WAVE SPECTRUM PARAMETERS ONE TO A LINE
ACCORDING TO THE PROMPT MESSAGES
TYPE THE MEAN PERIOD FOR SWPLL
-10.0
TYPE THE MEAN PERIOD FOR SEAS
w6.0
TYPE THE SIGNIFICANT HEIGHT FOR SWELL
.1.
TYPE THE SIGNIFICANT HEIGHT FOR SEA

THE DEFAULT VALUES FOR THE FREQUENCY BAND OF
THP DETERMINISTIC WAVEFORM ARE : 1..
Fl w 0.11000000E 00 F2 a 0.250000008 00
IF YOU WISH TO RESET THE VALUES FOR F1 AND F2
TYPE 1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE
TYPE 0 FOLLOWED BY A CARRIAGE RETURN ", .

PROGRAM IS RUNNING PLEASE WAIT

THE EXPECTED STANDARD DEVIATION FOR THE
ESTIMATE OF THE DETERMINISTIC WAVEFORM IS
APPROXIMATELY S - 0.21594351E 00
W WWtWWd* ************ • U'* ********** W'k* ***** 9 e .•

THE 90 PERCENT CONFIDENCE INTERVAL FOR THE ESTIMATE
IS PLUS OR MINUS THE VALUE C O 0.35522708E 00*************** ******************************** "

IF YOU WISH TO OBTAIN ANOTHER SET OF VALUES TYPE
1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE TYPE 0
THEN A CARRIAGE RETURN
• 0 "
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APPENDIX B

Time Series Plots for Synthetic Wave Data Analysis

Time "eries plots include examples of the theoretical explosion Waveform

versus the explosion waveform mixed with random noise,. random noise, filtered

estimate versus theoretical waveform, random error or random noise after

filtering, and bias due to filtering. The plots represent a time series that

would result if a device began measuring the background noise exactly 50 sec -

before the first explosion wave reaches the measurement location.
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A VARIABLE SELECTION MODEL BUILDING
TECHNIQUE FOR RADAR MEASUREMENT BIAS ESTIMATION

WILLIAM S. AGEE
ANDREW C. ELLINGSON, JR.

ROBERT H. TURNER

National Range Operations Directorate
White Sands Missile Range, New Mexico

ABSTRACT. Measurements of range, azimuth, and elevation from several
diffe•-Wf-rTiars are combined to estimate the cartesian coordinates of a
vehicle trajectory. Since the sequence of times tim lul, 2,---,N which
cover the entire trajectory. Since the measurements'are subject to
systematic errors as well as random measurement errors, the svstematic
error parameters (biases) are also estimated, The resultinq estimation
problem is a combined linear and nonlinear problem in which the trajectory
coordinates appear nonlinearly in the measurements and the biases appear as
linear parameters in the measurements. Applications of the above estimation
very often result in ill-conditioned linear equations for estimating the
radar biases, producing erroneous bias estimates. The problem of ill-
conditioning caused by multicollinearity among the terms included in the
bias model, is -treated by using a backward elimination method for the
selection of independent variables to be included in the radar measurement
bias model. The method is Illustrated with examples from WSMR radar tracking
mi ssions.

KEY WORDS. Multicoll Inearity, trajectory, estimation, regression,
varia5•i e-le-tiono stepwise regression
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I.

P VARIABLE SELECTION MOJDEL BUILDING 1ECHNIQUE FOR RADAR MvEASUREMENT BIAS ESMtVION

INTRODUCTION.

The WSMR radar Best Estimate of Trajectory (BET) program combines

the range, azimuth, and elevation measurements from all radars tracking

an object to optimally estimate a set of smoothed cartesian positions,

velocities, and accelerations of the object at each measurement time tt.

The radar measurements are subject to systematic error as well as a

random error component. The radar systematic errors are usually

"referred to as measurement biases. When an object is being tracked by

multiple radars and the relative geometry between the object trajectory

and the radars is sufficiently good, a measurement bias for each range,

azimuth, and elevation measurement can be estimated. It is important,

sometimes absolutely necessary, for the success of the multiple radar

BET reduction that estimates of the radar measurement bias be obtained.

When these measurement biases are estimated by least squares, the

resulting bias estimates are often erroneous due to numerical ill-

conditioning of the least squares estimation problem and

multicollinearity between the terms Included in the bias model caused

by overfitting.

We have attempted to treat this problem of erroneous bias

estimates by application of ridge regression techniques [1) and by

application of the method of principal components [2]. We have had

partial success with each of these methods but neitber has proved

satisfactory for automatic trajectory data reduction. Techniques are

414
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developed in this report which successfully treat the problems of

ill-conditioning and overfitting in the radar measurement bias

estimation problem. These methods are being incorporated into the

WSMR radar BET. These techniques are based on the use of modern,

reliable numerical linear algebra algorithms and software and on the

development of a statistical model building technique which estimates

only the radar bias terms which make a significant reduction in the

error sum of squares.

The difficulties with the radar bias estimates are illustrated

with some actual WSMR radar data sets. These data sets are treated

by conventional least squares estimation methods and by the model

building technique developed herein,

RADAR MEASUREMENT EQUATIONS

Let x, y, z be the coordinates of an object in a local cartesian

coordinate system at the radar site. The deam l mathematical model of

the radar measurements in terms of these cartesian coordinates is:

r(•) - (x2 + y2 + z1)1 - range

a(i) tan" - azimuth
Y .

e(;) * tan - elevation, ~(x•+ y2)i

where 9 is the position vector with components x, y, z.- The radar does not

measure these ideal values of range, azimuth, and elevation, but is subject

415
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to a measurement error which we assume to be additive and is composed

of a systematic c..mponent and a random component. Let bRo bAD bE be the

systematic or bias components of error for range, azimuth, and elevation,
.04

respectively. Also, let eR, eA, eE be the random components of the

measurement error. eRe eA, eE are assumed to be independent, zero

mean, and variance At, o El, o, respectively. Then the measured

values of range, azimuth, and elevation are modelled as:

R- r(R) + bR + eR

A, a(R) + bA + eA

E e(R) + b . + eE

L.EAST SQUARE ESTIMATION OF OBJECT POSIT.LON AND RADAR BIASES.

If measurements are available from only one radar there is no

potential for estimating the radar measurement biases, bR, bAD bE from

radar measurements alone. Thus, estimates of the object cartesian

position obtained from the single radars measurements will be biased if

bR, bA, bE are not zero.
Re~ At

Suppose, however, that we have measurements from several radars,

say M. Let the radars be indexed by i, al,M. The radar measurement

model is now written as

R aa r () + bR• + e Rm(1)

A - aC() + bA + eAc c-1,M (2)

EC eC(a ) + bE + eEE (3)

41,6
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where R is no longer the position vector of the object in a local radar '

.icartesian system but has cartesian components in a common reference

coordinate system. The functions ra(i), a&(i), e%(;) now involve the

position of the radar site with respect to the origin of the reference

coordinate system,

o+ y' + 9', (4),

aa(;) • tan"1  XT& (6) I,YT/,o

Go(;) tan (- %

where EXT T//T/. ZT] [(x-x*) (Y-YO) (z-zA)Mw/.,

i- is a rotatinn matrix from the local radar cartesian system to the '4*&"

common reference system., "

Let h (0) denote the vector with components rP( ), &(P), 901(g),

ba the vector with components bR, bA , bE, e= the vector with
a A0 a

components eR 0, a eE and m. the vector with components,

Ra, AO, E0. Then the radar measurement model Is:

ma - ha(i) + b= + e , aul,M (7)
01 a a a

Suppose we have radar measurements at a sequence of times ti, it-,N.

We index the position vectors and measurements with tt so that the

radar measurement model is'm (tI) - h1(i(t 1 )) + ba + ea(ti), i-1,N.

417
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For processing the radar measurements at time ti further package the
measurements by introducing the vectors

T
m (ti) * (m%(ti) m2 (ti) --- mM(ti)),

hT(R(ti)) •(hl(g(ti)) h2(9(ti)) ... hM(i(ti))),

bT * (b1 b2 ... bM), and e(t 1 ) * (e1(ti) e2 (ti) --- eM(ti)),

Then the model of the m radar measurements at time tis iI

m(ti) * h(`(ti)) + b + e(ti) (8)

Using the measurements from M radars over a sequence of N times

ti the potential exists, provided the relative geometry between the

object trajectory and radar sites is sufficiently good, to estimate both

the position vectors R(ti), ts1,N and the measurement bias vector b.

Suppose we have a trial or guess position 9,(t 1 ), *II,N. Such a trial

solution is easily computed. For example, let ;(tt)I(xC(tt)

y (tI) z3(t 1 )) be the cartesian components of the object position which

can be computed from the ath radar, Then a good guess solution is ,

obtained from [ x0(ti)1
(ti) median Y•(tl) '*

Now linearize the measurement equation (8) about R0(tt),

m(t1) ,f h(io(t 1 )) + H(ýo(ti))6(ti) + b + e (t,) (9)

41.8
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where H(i (ti)) is the 3Mx3 matrix of partial derivatives

(10ah(x(ti)) (0
H(ilti))" 0 Rt)

ai(t1)

A2 ^2 ^2

Suppose we have estimates aR ( 01 OE of the measurement error

variances for each of the radars. Let Z be a diagonal matrix of

these variance estimates. Then a weighted least squares estimate of

the 6i(ti) and the bias vector b minimizes,

NI

-rlt,) H(iolti))dýlt - 11)
0 A

where r(t 1 ) Is the residual vector, m(ti) -h(o(tt)).

Rather than forming the least squares normal equations by differentiating

(11), it is more accurate and convenient to solve the weighted least

squares problem using the QR algorithm.

,'",4a'
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APPLICATION OF THE QR ALGORITHM TO THE WEIGHTED LEAST SQUARES PROBLEM

In order to cast the weighted least squares problem into an

ordinary least squares problem to which the QR algorithm can be applied,,

the following replacerments are made

r(tI) I [ ) (12)
I *i ,

e(ti A F " -(tl) (14) ,,.

Then the weighted least squares problem posed by (11) becomes the

ordinary least squares problem to minimize

N
Sr(ti) H(;o(ti))R(ti) -ib (15)

Thus, at each time tt we have the modified measurement equation

Suppose that at each time ti, an orthogonal matrix is constructed

such that

rRH(io(ti)) 0 (17)
'0

420 ,',
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where Ris 3x3 upper triangular. Let

T T A.1

Qi r(t1Y y(ti) and Q1 P(t1). Then

y61 osx(ti) + P(ti)b + Q e(t1) (8

If y(t1 ) and P(t1) are partitioned as,
YX(t1)1[3x 1

yAti) * Yb~ti) I(19)
(3,1 -3) xj

P ~ t1
Pit) * Pb(ti) (0

L(3M-3)x3MJ

then

SI ti + b+ (1

421



If the bias vector b is known, then the first of equations (21)

provides the least squares solution for the incremental position

vector, 6l(t1 ). Thus, 6R(ti) is obtained by solving the upper

triangular set of equations

K;
Ri(ti) y(t) P(ti)b, i-1,N (22)

The second of equations (21),

'- [] I LwI '•i

' Pb~~tibbt = Yb(ti) ,i1N .•.'",'

provides an overdetermined set of equations to be solved for the

bias vector b. Let PbuEPb(tl) Pb(t2)---Pb(tN)J, Yb:Yb(t1)' Yb(t2)..b(tN)),
b~~~t1)~ ,bt)-P~NI Y Nt

and eb-Eeb(tl) eb(t2) --- eb(tN)). Then

Pbb •b + eb (23)
b Yb b

Suppose that an orthogonal matrix qb is constructed such that

b b 0 (24)

where Rb is a 3Mx3M upper triangular matrix. Then the least squares

solution for the bias vector Is the solution to,

422
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]b •QYb U •(25) L,

is N(3M-3)-3H. Thus, the bias estimate is given by the solution to the

upper triangular system of equations, •i

Rbb U 1 (26)

Having computed the linearized least squares estimate of the bias

vector from (26), the incremental position solution 89(t 1) is computed ON

from (22) for each ti. In order to conserve on core storage

requirements, the QR decomposition in (24) is not done directly,

since Pb is often a very large matrix. Instead of a direct QR
b~

decomposition on P the QR decomposition is done sequentially in time
-

as each Pb(ti) arrives.

Since the original observation equations and thus the original

least squares estimation problem is nonlinear, the above QR *

decomposition process for the least squares problem must be iterated

with the replacement,

Ro(ti) i Ro(ti) + 6(ti) (27)

423
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After the iteration process has converged, new estimates of the

measurement variances, 0a2 A aE2 are computed for each radarR A E

from the measurement residuals,

r(t 1 ) -m(ti) - h(Rf(ti)) - bf (28)

where Yf(ti) is the estimate of the position vector at convergence,

and b,, is the estimate of the bias vector at convergence. These new

estimates of measurement error variance are inserted into the diagonal

variance matrix, land the QR iteration process again is iterated until I

convergence. This outer iteration loop which reestimates the measurement

error variance is repeated for a fixed number of iterations.

Since the use of the full set of measurement tines for the

estimation of the measurement biases would consume considerable computer A.O-.

time, a highly thinned set of measurement times is selected for use in

bias estimation. This thinned set of measurement times is selected

to cover the entire object trajectory. This allows a reliable

estimate of the measurement biases while not requiring a great amount %A

of extra computer time.

I. '. ..,
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SOME EXAMPLES '

Although there have not been any convergence problems In iteratively

solving the nonlinear least squares problem for the object position and ,

the radar measurement biases, another problem which sometimes arises

in linear least squares •stiwation problems occurs frequently in the S

radar bias estimation problem. Very often, the estimate of the bias

vector, b, converges to a value for which several of the components are

too large and may have the wrong sign. Sometimes the bias estimate is

obviously erroneous. One obviously erroneous case which arises

frequently is that the elevation bias components will be large and

of the same sign. In linear least squares estimation the problem

of the vector of regression coefficients being too long is often
r DI; "

attributed to multicollinearity among the predictor variables. This

problem In the linear estimation case is often successfully treated by

some method of biased estimation such as ridge regression or principal

components. The problem has not been properly recognized or successfully

treated when it arises in trajectory estimation. Although the existence

of these erroneous bias estimates has been recognized in trajectory

estimation, the source of the difficulty was not properly recognized.

Some workers in trajectory estimation have stated that the existence

of this problem demonstrates the need to specify a prior distribution

for the biases in order to "tie down" or statistically constrain the

bias estimates. It does not take much experience in using these priors

for trajectory estimation to realize that the problem of inflated bias .

estimates is as much present with the prior as without the prior.

*N*
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We have attempted to treat the problem of inflated measurement bias .

estimates with both ridge regression [E) and with the method of

principal components [2). We have had partial success with each of

these methods but neither method is satisfactory for an automatic data

reduction program.

EXAMPLE 1:

Consider the following example from WSMR tracking data. This

example has three radars, R122, R123, R395 tracking a level flying drone,

flying at an altitude of about 30,000 ft. The graph of Figure 1 shows

the relative geometry between the target trajectory and radars. The..

least squares estimates of the radar measurement biases for this

example are,

R122 R123 R395

Range bias (ft) 118.0 115.1 72.4

Azimuth bias (miliradians) .186 '.143 .179 I

Elevation bias (miliradians) -. 705 -.911 -. 526
, _•. !A

The values of the elevation bias estimates, which are all large and

negative, illustrate a common type of erroneous solution occurring

in radar trajectory estimation, In this example we are able to confirm

that the radar bias estimates given above are greatly in error.

Using measurements from tracking cameras we are able to obtain position

estimates of the target trajectory which are considerably more accurate

than the position estimates obtained from radar measurements. By using

the optically derived positions to compute what the radar measurements
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should have been, we can compute the actual values of the radar

measurement biases. The following biases were computed using the

optically derived positions.

R122 R123 R395

Range bias (ft) 157.3 152.9 80.3

Azimuth bias (mil'i'adians) .05 .02 .09

Elevation bias (miliradians) .11 -. 08 -. 09 V

The large errors in the radar bias estimates are readily apparent.

EXAMPLE 2:

This example has three radars, R124, R125, R442 beacon tracking a

high performance missile. The graph of Figure 2 shows the relative

geometry between the radars and object trajectory. The least squares

estimates of the radar biases for this example are

R124. R125 R442

Range bias (ft) 257.8 304.8 166.9

Azimuth bias (miliradians) .056 .049 -. 373

Elevation bias (miliradians) -. 170 -. 368 -.479

Radar bias estimates derived from optical measurements are

R124 R125 R442

Range bias (ft) 254 297 189

Azimuth bias (mlliradians) 0 -. 04 -. 16 a..

Elevation bias (miliradians) 0 -. 05 -. 09
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Again the measurement biases estimated from least squares are .*..

seriously in error.

VARIABLE SELECTION PROCEDURE

The stepwise regression procedure in the BMDP software package was

tried as a method of variable selection for the radar measurement bias

estimation problem. Several examples were tried using the BMDP

stepwise regreision. Although the BMDP procedure proved to be unsatisfactory

for many of the examples, the results suggested changes necessary to develop

a satisfactory variable selection procedure for the bias estimation problem.

The computer output from the BMDP stepWise regression, routine applied to

the first of the previous two examples is presented on pages 433-436.

Variables x(1), x(2), and x(3) correspond to the range biases for R122,

R123, R395 respectfvely. Variables labeled x(4), x(5), and x(6)

correspond to Ithe azimuth biases for R122, R123, and R395. Variables

labeled x(7), x(8), and x(9) correspond to the elevation biases for R122,

R123, and R395. The stepwise regression for this example uses an FIN a 6. .,

Thus, at each step the variable with the largest F-to-Enter (provided it is

greater than FIN) is entered into the radar bias model. Thus, in step #1

the range bias for R395 is entered into the model. In step #2 tho azimuth

bias for R395 is entered. In step #3 R122 elevation bias Is entered into

the bias model and in step #4 R122 range bias is entered. In step #5

a difficulty occurs in the BMDP program. At this point variable x(2)

(R122 range bias) with an F-to-Enter of 2102 should have been entered into

the bias model. The BMDP output indicates on page 435 that it was unable

to enter x(2) into the model because to do so would lower the tolerance
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of variable x(1) below its limit of .01. This is equivalent to saying

that this bias estimation problem is so ill-conditioned that, for the

numerical method being used by BMDP, the minimum conditions for

satisfactory operation'cannot be met. Finally, the variables x(9)

corresponding to R395 elevation bias and x(4) corresponding to R122

azimuth bias are entered into the radar bias model. The final radar

bias estimates in the model are given on page 436. Comparing these bias

estimates with the radar biases derived from optical measurements

indicates that the bias model obtained from BMDP stepwise regression is

erroneous. The reason for this is the failure of BMDP to enter the

variable x(2) corresponding to R123 range bias. The value of the R123

range bias obtained from the optical measurements is 152.9 ft which

indicates that It must be a significant influence in the radar bias

model. Thus, this example suggests that a better numerical method

needs to be used for the current application.

The computer output from the BMDP stepwise regression routine applied

to the second of the previous two examples is presented on pages 437-44.1k

As in the previous examples variables x(1), x(2), x(3) correspond to

radar range biases for R124, R125, and R442. Variables x(4), x(5),

x(6) correspond to azimuth measurement biases for R124, R125, and R442,

Variables x(7), x(8), x(9) correspond to elevation measurement biases for

R124, R125, and R442. In this example of stepwise example an FINN is

being used. This Is done so that all variables may eventually be entered

into the model. It is informative in this example to observe the

sequence of multiple RI values as variables are entered into the

measurement bias model. After having enterad the three range bias
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variables, x(1), x(2), x(3) into the model the multiple R2 value Is

.9944 indicating that 99.44% of the sum of squares has been explained by

these three variables. In step #4 x(6) corresponding to R442 azimuth

bias is entered and results In a multiple R2 of .9959, an increase of

only .0015 over the previous value. As additional variables are entered

into the model the sequence of increases of multiple R1 is .0003,

.0004, .0007, .0001, .0000. Also, as these additional variables are

entered into the model, the magnitudes of these additional biases are

large and erroneous, and the magnitude of x(6) which was entered in a

previous step also becomes Inflated and erroneous. Thus, variables

x(4), x(5), x(7), x(8,), and x(9) are erroneous and are ineffective 1t

explaining the sum of squares. This example suggests that, in order to

combat the problem of erroneous bias estimates, an effective model building

procedure might be constructed by placing a lower limit on the amount of

change In the multiple R2 that is acceptable as a variable Is entered

into the model.
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RADAR MEASUREMENT BIAS MODEL'BUILDER

Both a forward selection procedure and a backward elimination procedure

were developed and tested as radar measurement bias model builders, At

each step of the model building process the forward selection procedure

enters the variable into the model which produces the largest increase

in the multiple R2. The selection process is stopped when the largest

increase in the multiple R2 falls below a specified threshold, 6.

Starting from the model which includes all of the radar bias parameters,

at each step of the model building process the backward elimination

procedure deletes the variable from the mod~l which produces the

smallest decrease in the multiple R'. The elimination process is

stopped when the smallest decrease in the multiple R2 is greater than a

specified threshold, 8 or when the error sum of squares has increased

by more than (1+f) the error sum of squares of the full model. The

two model building procedures have been tested on numerous data sets.

Sometimes the two selection methods result in the same model, but more

often they result in two slightly different but reasonable measurement

bias models. The backward elimination model builder was selected for

implementation in the WSMR radar reduction program because It allows

one to obtain some Idea of the effects of the parameters which are not

in the final model.

Starting with the full bias model given in equation (23),

P bgPbb Yb1

.442
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thsof ste e Rbg ulmequ tio

we suchB)Q'PUI oI9 L:* * ,'

weconstruct the orthogonal 3 seuch the Q modet

(24). Then the measurement bias estimate for the full model is given

by the solution to equation (25),

F The sum of squares due to regression for the full model is......

SSR(B) ( U I I (29)

where B ( bit J-1. 3M) denotes the full model

and the sum of squares due to errPor is I

SSE(B)s 1121'(0

RISS) HR(B2+SS "(1lUlI,+ IlU21,) (31)

Now suppose variable bj is deleted from the full model. Let Bj denote the

model with b deleted, B (b k 0 J). Then the regression sum of

squares with bj deleted is,

SSR(Bj) * SSR(B) - SSR(b IBj) (32)
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where SSR(bj IBj) is the extra sum of squares due to entering bi into -;,

the model given that all other variables are already in the model. We

want to delete from the full model the variable, bj, such that SSR(bjL IBj)

is a minimum provided SSR(bjh IBS)/(SSR(B)+SSE(B)<6. :Thus, we choose

bj such that SSR(bj. IB j) <'SSR(bjIBj), J-1,3M and

SSR(b,1 j)/SSR(B)+SSE(B)_< Choosing the minimum of SSR(bjIBj) is

equivalent to selecting the variable b for which the partial

F-coefficient,

F SSR(B) (33)

is a minimum, since SSE(B) is independent of bJ, The partial F is

easily computed as,
A2

F. (34)

where b is the estimated value of bj in the full model and 4-.,
A

is the standard error of b;• Thus we delete the variable b• from
the full model, where F, - min iFr, J-1, 3M). The Jist CO umn of the

matrix is then deleted from Pb and columns J + 1 thru 3M are moved down

one column, ite., we do the replacements pj *Pj+i1' "Jmj 3M-1 where

Pj is the jth. column of P The backward elimination is:then repeated "%;. *I:

using the new matrix Pb which has only 3M-1 columns. The algorithm for

the backward elimination model building process is summarized:

44 4 ..



GA

Ns ' 3M - STEP

1. Construct an orthogonal Qb such that Qb 0[b]

where Rb s

2. Solve Rbb -b b u Uldtmension {b} * Ns

3. Compute SSR -]IU 11l, SST Il1il11 1 R-a SSR

TbI STEP'O,
4. 'Compute C - (RT. 1 3M-1

A2b

5. Compute partial F's, F J-liN.

6. FN • min UP J. Ns.

If F ,/SST >6, stop and use b as the final model,
iA

else make the column replacements, Pb(t)&Pb(t+l),tJi ,Ns-1,

An alternative for stopping the elimination process is to stop at step

t'k-i when SSE(B "k )>(I+f)SSE(B) where B

(bit t 9 j it$*$ k and f is a small fraction, say f I .1.

445

% U * *. *S .'""s ".. . ,:' . . , : , :, , %'.• *,.~.. \%4/-',_.• _,,.., ,',~U ., * * ,', .', *':'•':,;.,'... . * , p,, ,U'.,,,,,,



I * *

The deleted variables, b I, b are considered a's dependent
~ ~' k-1

variables and the set of estimated variables B ar--- ae

considered as independent variables. Having Identified and estimated

the independent variables, values for the dependent variables are
A

computed as averages of residuals. Let bt, l#JL j 2 ""jk1 '^be the

estimated values of the independent variables. Let bi be the vector with

components b1  for ItJ', J" and 0 for the components

corresponding to the dependent variables. Let ml(ti) be the observation

vector at time tt with the vectorb removed,

A

m'(tI) u m(tI) - b, - h(R(ti)) + (b - bi) + e(t 1 ) (35)

Linearization and the QR algorithm are again applied to computing the

position vectors Rt, itmN which minimize

N 2•

lid (t1i l(36)"

f I'

where I Is the final estimated covariance matrix computed from the
f

measurement residuals, (28). The values of the dependent variables

bi;,m it$ ---"Jk-1 are now computed as

A 1

where O(tt) is the estimated position vector at timeott obtained by

minimizing (36).
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EXAMPLES REVISITED

EXAMPLE 1:

When the backward elimination variable selection technique described

in the last section is applied to the first of the two examples previously

described, the following results are obtained.

Full Model

Estimated biases
122-R 122-A 122-E 123-R 123-A 123-E 395-R 395-A 395-E

118.0 .196 -. 705 115.1 .143 -. 911 72.4 .179 -. 526

SSR " 18972, SSE * 547 R' * .9810

Partial F's

161.8 3.0 3.98 154.4 6.67 39.0 13.0 7.27

123-A deleted '.

Step 1 bias estimates

122-R 122-A 122-E 123-R 123-E 395-R 395-A 395-E

118.0 .053 -. 779 115.1 -. 985 59.1 .118 .559

SSR • 18971, SSE * 549 R' .9810

Partial F's

162.0 57.3 154.5 8.0 149.5 91.0 8.9 4,

122-E deleted

4... ,"'*
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Step 2 bias estimates

122-R 122-A 123-R 123-E 395-R 395-A 395-E _

137.9 .053 135.0 -. 207 69.0 .134 -. 140

SSR - 18966, SSE - 554 R. - .9807

Partial F's

2756.1 5 2632.5 1291.2 1278.4 173.3 k04.9

122-A deleted

,. ~~~~Step 3 bias .es..tima~te~s !?

122-R 123-R 123-E 396-R 305-A 395-E

137.9 134.9 -. 207 68.8 .134 -. 140

SSR " 18908, SSE - 610 RI .9777

Partial F's

2753.5 2629.9 1291.2 127t,2 F72. 204.8

395-A deleted

Step 4 bias est!mates

122-R 123-P 123-E 395-R 395-E

159.0 156.1 -. 207 84.2 -.129

SSR m 18736, SSE - 782 RI w .9688

Partial F's

5869.0 5628.5 1291.8 2998.7 75.

395-E deleted
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122-R 123-R 123-E 395-R -Independent bias variables

p162.1 159.1 -.205 86.4

SSR u18561, SSE -958 R * .9509

Partial F's

6176.1 5927.1 1264.3 3197.9

Further deletion of variables would cause more significant decreases

In R1. The dependent variables are the 122-A, 122-Es 123-A, 395-A$,

and 395-E biases. These biases are computed from the corresponding

residuals. The results are

122-A 122-E 123-A 395-A 395-E

.057 .001 -.002 .075 -.127 -dependent bias variables

These values of the radar bias estimates compare favorably with the

valv'es computed from optics,

122-R '.22-A 122-E 123-R 123-A 123-E 396-R 395-A 395-E

157.3 .05 .11 152.9 .02 -.08 80.3 .09 -.09

A449

ft . . .... ,., *.* *f* ...................................................... "T-.-



I.

EXAMPLE 2:

The following results are obtained when the backward elimination

variable selection technique is applied to the second of the two Zk4

examples previously described.

Full Model
Estimated Biases

124-R 124-A 124-E 125-R 125-A 125-E 442-R 442-A 442-E

257.7 .056 -. 170 304.8 .049 -. 368 166.9 -. 373 -. 479

SSR - 17867, SSE • 339 R' .9813
Partial F's ;•

5537.0 2.0 28.1 4579.0 32.3 661.9 25.0 53.4

,125-A deleted
Step 1 bi•s estimates

124-R 124-A 124-E 125-R 125-E 442-R 442-A 442-E

258.6 .046 -.167 304.2 -.360 167.6 -.344 -.472

SSR - 17866, SSE • 339 R2 - .9813

Partial F's

6159.0 27.5 4672.1 31.7 679.9 28.2 52.8 1

124-A deleted

Step 2 bias estimates

124-R 124-E 125-R 125-E 442-R 442-A 442-E

257.5 -. 158 301.5 -. 337 170.4 -. 321 -. 461

SSR - 17865, SSE m 341 Ru 2 .9813

Partial F's

6602 6084.2 30.4 804.2 26.8 51.4

124-E deleted

J, 450 ",Ile. -
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St'ep 3 bias estimates

124-R 125-R 125-E 442-R 442-A 442-E

256.1 300.2 -. 141 178.9 -. 296 -. 212

SSR * 17839, SSE * 367 R2 I .9798

Partial F's

6580.2 6058.3 18. 961.0 22.9 25.7

126-E deleted

Step 4 bias estimates

124-R 125-R 442-R 442-A 442-E

255.1 298.8 181.7 -. 289 -.. 154

SSR * 17830, SSE * 376 R2 a .9793

- Partial F's

6604.3 6090.2 1018.2 21.8

442-E deleted

Step 5 bias estimates

124-R 125-R 442-R 442-A

260.4 305.0 178.8 -. 263

SSR * 17813, SSE * 393 R' " .9784

Partial F's

8230.9 7456.9 1001.0 1

442-A deleted

"i"
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Step 6 bias estimates -. '.

124-R 125-R 442-R
- independent variables ,mw

265.5 305.5 177.3

SSR 17794, SSE 411 R • ,9773

Partial F's

10411.9 7496.6 988.0

Additional deletion of variables would produce large decreases In R'.

The dependent variables are identified as the 124-A, 124-E, 125-A, 125-E,

442-A, 442-E bias. The values of these bia,ses computed from the

residuals are,

124-A 124-E 125-A 125-E 442-A 442-E

.020 .002 -. 105 -. 048 -. 180 -. 016

These values of the radar bias estimates again compare favorably with the

values computed from optics,

124-R 124-A 124-E 125-R 125-A 125-E 442-R 442-A 442-E

254 0 0 297 -. 04 -. 05 189 -. 16 -. 09
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The backward elimination va-'1ible selection technique described

above has been successfully applied to numerous other examples of

radar bias estimation. A question in the application of this method

which has not been totally answered is when to stop the elimination

process. From all applications tried, itI appears that it is best

to stop the elimination when the fractional change in the SSE 4

exceeds a given threshold. For these applications a plot of the

SSE versus the elimination step number yields a curve whose general

characteristics are shown In the following graph,

0 1 2 3 4 5 6 7
STEP NUMBER

One would expect that a good stopping point is close to the knee of

this rurve', probably Just past the knee. In some applications It has

been advantageous to go twv points past the knee. A good answer

about when to stop will probably come with additional application

experience.
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This paper appe~rd in the Proceedings of the 29th Conference on the Des'iqn, of
"Experiments, I is reprinted here to correct several errors that occurred in '..

typesetting the authors formulas.

PN THE LEHMANN POWER ANALYSIS FOR THE WILCOXON RANK SUM TEST

James R. Knaub, Jr.

US Army Logistics Center

ABSTRACT.

The Wilcoxon Rank Sum (or Mann-Whitney) Test is among the most useful

and powerful of the non-parametric hypothesis tests. However, as with many

hypothesis tests, when a clear alternative hypothesis and corresponding

power analysis is not present, the practical Interpretation of results

using this test suffers greatly. This paper presents and clarifies an

alternative suggestd by E. L-. Lehmann In 1963 and provides tables of

practical use which'have not prviously been calculated due to computational

difficulties.
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I.. *.-

On theLehmann Power Analysis for the
Wilcoxon Rank Sum Test

The Wilcoxon Rank Sum (or Mann-Whitney) Test is among the most useful and
powerful of the non-parametric hypothesis tests, However, as with many hypo-
thesis tests, when a clear alternative hypothesis and corresponding power
analysis is not present, the practical interpretation of results using this l
test suffers greatly. This paper presents and clarifies an alternative sug-
gested by E. L. Lehmann in 1953 LAnnals of Mathematical StatiLsti [7]) and
provides tables of practical use whTlh have not previosTy Beincalculated due
to computational difficulties. This work has recently been applied to survey
data gathered for the US Army Logistics Center, (See reference [5]J)

When sample sizes are small, and a power analysis Is not available, one may
fail to reject the null hypothesis when the true state of nature is very
different from what is stated in the null hypothesis, With a small sample size
and smalleC, it may be impossible to reject H. Further, when sample sizes are

very large, the null hypothesis may be rejected at a very small significance
level when actually the null hypothesis is so nearly true, that it is close
enough for all practical purposes. Taken to the extreme, with infinite sample
sizes, the attained significance level will be zero, even when there is only a
very small, but finite difference between H and the true state of nature.
Thus significance level can be very misleading if' used alone,

When a null and a definitive alternative hypothesis can both be stated, and
'probability distributions found under each, the results of an hypothesis test
can be stated similarly to a confidence interval if the "point estimate" from
the observed values falls between 'the two hypotheses. In the case of the
Wilcoxon Rank Sum Test, only one alternative hypothesis has been well developed '
and will be presented here. Due to the nature of this test, however, even if
the evidence may strongly indicate that the true state of nature Is not bounded
between this alternative and the null hypothesis, this power analysis can still
be used to obtain a reasonable estimate of what the actual state of nature
happens to be, (In the case of the Multiple-sample Westenberg-type tests of
reference £4], an alternative must be picked such that the true state of nature
Is indicated to be bounded by the null end alternative hypotheses,. Fortun-
ately, that is not the case here, nor was it the case in reference [6), which
is a multi-sample test.) I,.,

Consider that the null hypothesis, Ho, of the Wilcoxon Rank Sum Test

indicates that P(X<Y) - 1/2. That is, under Ho, any value picked at random
from the Y population, is larger than any value picked at random from the X
population, with probability of 1/2. Here an alternative hypothesis, H1 , is
used such that P(XY) m 2/3. (The exact form of HI, is discussed in [7],)

Graph 1 Illustrates a possible configuration for this alternative hypothesis.
For this example, consider that under H0 , all observations are taken from a
N(r,s) distribution such as the N( 5,1) shown on the left in graph 1, but under
H1 , the Y sample comes from the N(r+O.61s, s) distribution, while the X sample
comes from the N(r,s) distribution.
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Another example of a possible situation satisfying the alternative hypo-
thesis, H1 , given approximately by comparing a gamma (4,1) with a gamma (3,1),

is illustrated by graph 2.

.Note that the W1lcoxon Rank Sum Test Is most sensitive to location, a
little sensitive to shape, but not to dis persion (except as ft relates propor-
tionately to differences in location). Therefore, it is the differences in
location that are of primary importance In graphs,1 and 2.

In order to determine the probability of drawing a value from'distribution
A which is larger than a simultaneously drawn value from distribution B, the
following may be used:

P f~I rfft1dtdx.kfB(X) f(tdd
X".0 twX I!

wher. fA and f@ represent density functions.

For the case where A and B are both gamma distributions,

p * ~ . rl(cA +¶ -O .r)
A( T r~i J -j. .T ..

(C1A + J/00ABB)

For gamma (4,1) and gamma (3,1), P * 21/32 * 0.666.

For normal distributions, us@ O[(PA ps)//Vx +0O] , as in the Church-Harris-
Downton (C-H-D) method of missile motor katety testing [2'. (Note: Thi'
reference to the C-H-O method should not be construed as tie author's endorse-
ment of this method for the purpose of missile motor safety testing.)

The calculation or power under this alternative involves a summation over a
typically large number of products. Calculation of this value can become
extremely time consuming, even for a high speed computer. A program was
written for the author at White Sands Missile Range which will calculate these
exact values, however, in general, the sample sizes must be very spiall.
Recently, however, the author constructed a simulation which provides estimates
of the power for much larger sample sizes. A number of the "products" men-
tioned earlier are calculated and the mean is computed. 1he number of products
Involved in tht exact calculation c€n be determined, and It is multiplied by
this mean, Comparison to values calculated exactly (when practical), and a
study of the sensitivity of the results to Increased replications, as well as
comparison to other simulated values bounding the results in the tables, led to
the use of from 1 to 20 million replications to simulate values for the tables
found in this paper. (Work has been done, reference [3), to determine the
number of simulation replications needed under less raoiical circumstances.
Here, however, a larger number of replicaLions appears nece:1'.•,y.) (For n in
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50, up to 35 million replications were used. It appeared, however, that
fewer replications using a number of different seeds yielded mean answers which
more quickly converged to reasonable results, especially when using antithetic
seeds.)

In the tables, n is the sample size of the X sample, m is the sample size
of theY sample, RS is the rank sum for which type I and type 1I error proba-
bilities are calculated, PA is the former of those probabilities, and PB is the
later. Specifically, PA is the attained probability of making an error if H0

is rejected, and PB is the attained probability of error If H1 is rejected,

both corresponding to the same RS value. RS is always calculated by adding the
ranks of the Y elements in the combined sample. Note that for smaller sample
sizes, power 6PB is noticeably larger than unity due to the discrete nature of
this test. That isq the probability of obtaining exactly the event observed
(and no other) is non-zero.

Three significant digits are given for PA and only two for power and PB
simply because it takes fewer replications of the simulation to satisfactorily
obtain a value for PA than for the others. ,,

From the annex to table 1, it is found empirically that if x is the size of
each of the two samples, and f (x) is the probability of a type II error .

under the alternative used here, adjusted to correspond to a specific signif-
icance level, then, as a'continuous representation of actually a discrete process,

anlix exp(-x/16).

for at least 3 < x < 40, and perhaps this approximation could
be trusted for x a 45 or larger. "Howiver, extrapolations are always more
dangerous than interpolations, so caution is advised for further extensions.

For o U 0.050$

fn,, 5(x) exp(-x/[26exp -X3)

for at least 4 < x < 40, and perhaps for x substantially larger. Using this
approximation, Tt ii conjectured that for n w m n 66, when PA Is approximately
0.05 (RS w 4751), then PB for this alternative is also approximately 0.05 and
the true state of nature would then quite safely be said to (probably) lie
between the null and alternative hypotheses. (At the 0.1 probability level for
PA and PB, this could be said When n w m w 37, and RS n 1507.) An extrapola.
tion to n w m ,= 66 is questionable, however, and further extrapolation is not
advised. Computer simulation for n a m a 50 indicates that for the top curve
(PA z 0.05) In Annex I to table 1, true values in this area for PB may be
somewhat smaller than this curve predicts. For PA Z 0.10, PB values for large
n and m may be somewhat larger than predicted.

v,::Z
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In Conov r s book ril, an wroxtmatton is ,!yen to find RS for a given PA
value. (RS m n(m + n + 1)/2 + x1.. /mn(n + m + 1)/12 , where xl..• is from
the table of the cumulative normal distribution.) The two functions given .,
earlier can be used to estimate PB values when PA = 0.10 or 0.05.

The final graphs, 3-7, are taken from work ths author directed at White
Sands Missile Range in order to study this alternative for the Wilcoxon Rank :,.ZV
Sum Test with emphasis on simulation validation for missile flight simulations. 4
When comparing a very few live firings to 4 substantially larger number of
simulations for each scenario, it can be seen from these graphs that once one
sample is substantially larger than the other, increasing the larger sample
size further does very little to Improve the power. These graphs are contin-
uous representations of what are actually discrete points. The values for
those points were calculated analytically as noted in the acknowledgements.

Finally, when n )tm, PB can be bounded using the exponential formulations
found earlier in this paper. If, for example, RS is such that PA 0.1, and .
xi , Is, the smaller of n and m, and x, is the larger, then one has that approx-
imately exp(-x 2/16) < PB < exp(.xl), with PB somewhat closer to

exp(-x 1/16), especially when x1 4< x2.
For larger sample sizes thin are handled here, parametric methods may be

used. However, in addition to the probability of error associated with any
conclusion drawn from a parametric test, there is the additional risk Involved
in assuming the distributional forms usc in such a test. Hypothesis tests
should also be used to study thqse distributional assumptions to provide a more
complete risk analysis.

EXAMPLE:

Consider two sources of data, X And Y, where it Is suspected that Y may
represent a population of iargeir location than X, buit this is not clear. If 11
observations are taken from the X population, and 19 observations taken from Y,
then the critical value of the rank sum (RS) of the Y sample observations
within the combined sample which represents the poitlu at which rejection of thk
null hypothesis would occur using a = 0,10, is approximately

RS ' (In+ n + 1)/2 + 1.2816•r.n(m+ n+ +. 1)/12
• (1,•)(,a1)/2 + 1,281n/•i•)¶1/fT37T

- 324.3

Therefore, If RS > 325, Ho would be rejected at the -a 0.10 level. However,
should RS = 32.5, and Ho not be rejected, then the probability of mikirng a type
II error with respect to the alternative hypothesis illustrated in graphs 1 and
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2 is approximately bounded by exp (-19/16) and exp (-11/16), so 0.30PB<0.50.
Note that, from table 2 , when PA a 0.099, PB (10,20) 0.43. Using 4,000,000
replications in the program given In Appondix A, for m A 19, n * 11, and RS *
325, resulted in PA 0.100 and PB S 0.42.
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Table 1

n =m RS PA power PB

3 12 0.3b0 0.62 0. EI
3 14 0.100 0.27 0.85
3 15 0.050 0.15 1O0
5 32 .0.210 0.54 0.55
5 34 0.111 0.37 0.71
5 35 0.075 0.29 0.79
5 36 0.048 0.21 0.865 39 0.008 0.05 0.97

10 122 0.108 0.52 0.51
10 123 0.095 0.49 0.54
10 127 0.052 0.36 0.67
10 128 0.045 0.34 0.69
10 136 0.009 0.13 0.89
15 264 0,101 0.63 0.39
15 265 0.094 0.61 0.41
"15 273 0.049 0.47 0.55
15 289 0.009 0.21 0. 80
20 458 0.101 0.71 0.30
20 459 0.096 0.70 0.30
20 471 0.051 0.58 0.43
20 472 0.048 0. 67 0.44
20 496 0.010 0.30 0.71
"25 704 0.101 0.79 0.22
25 705 0.098 0.78 0.23
25 723 0.050 0.66 0.35
25 758 0.009 0.38 0.63
30 1002 0.101 0.85 0.16
30 1003 0.099 0.84 0.16 H
30 1027 0.050 0.74 0.2730 1073 0.010 0.47 0.54

35 1383 0.050 0.79 0.21

3Q 1587 0.100 0.91 0.09
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Annex I to Table 1
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Table 2

n, m
n Xm RS PA power PB

5,10 85 0.297 0.70 0.35

5091 0.103 0.42 0.63
5,10 90000.70.7768,5,10 92 0.082 0.37 0.8l 94 o0o05o 0.27 0.77
5,10 99 0.010 0.10 0.93

10,5 45 0.297 0.71 0.34
10,5 51 0.103 0.41 0.65
10,5 52 0.082 0.35 0.70
10,5 54 0.050 0.26 0.79

10,5 59 0.010 0.08 0.95

5,25 412 0.094 0.45 0.57
5,25 418 0.048 0.33 0.69
5,25 429 0.009 0.13 0.88

5,25 430 0.008 0.12 0.89
25,5 102 0.094 0.44 0.59

25,5 108 0.048 0.29 0.73

25,5 119 0.009 0.09 0.92
25,5 120 0.008 0.08 0.93

10,20 340 0.099 0.58 0.43
10,20 348 0.050 0.44 0.58
10,20 363 0.009 0.20 0.81
20,10 185 0.099 0.59 0.43

20,10 193 0.050 0.44 0.58
20,10 208 0.010 0.18 0.84
5,50 1444 0.105 O.50 0.51
5,50 1457 0.050 0.36 0.65
5,50 1480 0.008 0.14 0.87

50,5 184 0.105 0.50 0.52
50,5 197 0.050 0.32 0.69
50,5 220 0.008 0.09 0.92
10,50 1590 0.101 0.65 0.36
10,50 1608 0.051 0.52 0.49
10,50 1643 0.009 0.26 0.75
50,10 370 0.102 0.68 0.33 •$
50,10 388 0.051 0.52 0.49
50,10 423 0.009 0.22 0.79
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APPENDIX A

FORTRAN CODE FOR

SIMULATION:'

"LEHMJANN POWER ANALYSIS

FOR THE

WILCOXON RANK SUM TEST"

(LPAWRST)
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ADDENDUM

Multiple applications of this test can be used to compare two levels of a
factor under a nuinbor of conditions. If, for example, manufacturer A produces
a machine which is suspected to have higher reliability under most sconarios
than a similar machine made by manufacturer B, then under each of the y
scenarios, mi1 is the sample size of A's machines and ni Is the samtple size

of B's machines, for i a1 to 'i',s PA1 and PBican be calculated for each of thle
scenarios. Consider 0 a Y and 0 b .

PA is the probability of a or more PA11s being less than P

(1 *1Y ),when H0 is true.

PS is the probability of b or more Ni11s being less than p

(1 * 1. , when H1 is true.'
Therefore,

Y : . ..

jB* (x)PA
Xub B "B•

mahnd p are chosen to be reasonable considering sample sizes for each of the y

iA I then the evidence shows that, in gtenural,eth true state of nature
is just as likely to be equivalent to H1 as Ho.

PA cenao 2 then the eaidence indicates tat in 1al, the true state of

serif s tnidr ,. _ aln 0< genera, :•:

-nature is twice as likely to be equivalent to H as III. If PA arid
p8 are small, then the indication iswonly that the true state of
nature is closer to H than H1, although possibly not very close

t o e i t h er . [,,'.

(Nbte that another paper in this conference, "Numperical Validaio of
Tukey's Criteria for Clinical Trials and Sequential Testing." , _by C. R. Lke,
also deals with this type of ptoblein, and was of interest to this author.)

to ei her. . •,
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At this time, this methodology is being used to determine whether survey data
from a presumably less reliable scairce is compatible with a presumably superior
data source. Difficult to obtairp Oita on U.S. Ariiiy warehousing activities have,
as one obvious characteristic, a vb,,-y flat "peak,." Therefore, a samtple~median
value can be changed drastically by the addition or deletion of one data point.
If the secondAry data source proves to provide values distributed clos~ely
enough to that of the primary source, the advantaqe of including this'source
may outweigh the disadvantage. The currant situation is more complex
than this. However, some results employing the methodology of this addendum;.
have been realized.

ADDENDUM 2

Two approximations for the power of this test which apparently are good
for a wide range of normal alternative hypotheses are to be found in
E. L. Lehmann, Nonparametrics: Statistical Methods Based on Ranks, Holden-D0y,
1976. Although ghtr cteo noR-a-afe-Fifa 9 Yes 1 ntref F-mi-a1 which they
ore written, these approximations can be used to extend the tables given~ here
to larger n and m. The easier of the two approximations to apply, In its
slimplest form, is found on page 73 of the above reference and is essentially as
follows: -~BS

power 0 VB + 5

where in our case we have ('A -B)/a % 0.610.

Note that in the example in the main body of this paper (m u19,ni 11),
that this approximation gives power *0,60, which is consistent with what
was shown earlier.
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Limited randomization with d.ttaled reassignmen- 1 as the 1*ey to
taking advantage of modern summaries

John W. nukey

Princeton University* and AT&T Bell Laboratories
Princeton, New Jersey 08544 and Murray Hill, New Jersey 07974

I. Uncertainty, Validity, and Stringency.
Some experimentation needs to be done with the least uncertainty possible. Some of

this Is devoted toward direction of change, and can thus be analyzed in terms of a simple
significance test or a simple confidence Interval - perhaps obtained by trial and error bisec-
tion among displaced significance tests.

In such cases we need to reduce all kinds of uncertainty, including uncertainty about
any statistical hypotheses that matter for our analysis.

For a simple stimflcance test to be valid, we must control the chance of significance in
the null situation - allowing it to be at most inappreciably greater than the announced P-
value,

We would like the null situation to be as broad as possible, since the broader It is, the
more usefully valid is our analysis. The broadest null situation that we know how to handle
well, when we have treatment and control in blocks of two, is:

Any set of observed results Is as likely to occur for any interchanges, each within a
block, of treatment with control - "all reassignments are equally null-probable".
Notice that no assumption is made about relative likelihoods of "different" sets of

observed results. There is no "statistical model" in the ordinary sense, and there Is thus no
need to worry how well - or how poorly - such a model approximates the real world.
When we are being careful, we should know why our analysis is validl We should not
depend on unverifiable assumptions for validity.

Validity Is of course not enough. We surely do not want to be wasteful, So we must
also seek, stringency as expressed in such technical terms as

minlmtzed variance efficiency
actual variance

or (minimized tiiicai 10 ho ofdneitra
actual typical length of confidence interval J

Here "variance" or "typical length", while hopefully imitating what goes on In the real '"

"Trepared in part in connection with reerch at Princeton, supported by the Army Research Office (Durharn).

Prosenied as Keynote Addxes, first annual Frontier* of Industrlal 'Fpttmentatlon Conference, Mohonk, New York,
April 23, •94: A th• Northern New Jersey Chapter of the American Statistical Association, October 9, 1994; and as
Keynote .qddiess, 30th Conference am Dsign of Experiments, Army Resarch, Development and Testins, LAI Cruces,
New Meidco, October 17, 1984
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world, can only be assessed in terms of (i) a statistical model or (ii) sampling from a larger
body (probably bodies, since one body is unlikely to suffice) of veal date, Assessment in
terms of a statistical model can be either by formula-manipulatlon or by numerical calcula-
tion, which will usually require some form of experimental sampling (direct, Monte-Carlo,
configural, etc,).

If we could gain stringency without fixdng a statistical model - or class of statistical
models - our desire for certainty would drive us to do so. But we do know that pairs of sta-
tistical models can be invented to be so antithetic to one another that stringency for either N,
rules out stringency for the other, The best certainty we can reach, therefore, comes by
using a fairly flexible class of statistical models - one which we hope parallels the real world
in whatever ways are most important,

This OFTEN means that we must seek robustness of stringency.
smllDuring the last decade or so much progress has been made in identifying summaries of
small and moderate-sized samples that do provide robustness of stringency, but little atten-
tion has been paid to how such summaries should be built into experimentation.

We can have both high validity and high robustness of stringency, When we are being
. careful we SHOULD errange for BOTH,

* And If, in special circumstances, some other attainable property is more important than
robustness, we can usually combine it with guaranteed validity by selection of a different V
kind of summary. When we wish to be careful, we should arrange for. both validity and pre-
ferred specially-useful-property,

2. The Fisher-BabbaSe 'legacy of a legacy".

Sir Ronald Fisher and Charles Babbage left us two things, which together were not
then a legacy, but could - and have - grown up to become one. Namely randomized exper-
iments and computers.

3. The economics of computation has changed; explicit reassignment is feasible and
"needed!
that"It was almost 50 years ago that we heard - with respect and perhaps a touch of awe -

,that L.J. Comrie had h4l1 a million multlpllcation# to do, and had rented a set of punched-
cards machines (what are now dignified as "unit record equipment") for six months to do
just this.

This year, one can buy - for no more than a statistician's annual salary - a workstation
with a few megaflops of capacity. One which, since it can do millions of multlplictions in a

-" second, could (I/0 aside) do Comrle's 6-month chore in a fraction of a second.
The Important conclusions are these:

- If a million arithmetic operations can save a second's time for a statistician - and the
opportunity recurs often encough - we cannot afford NOT to do the arithmetic.

. If reanalyzing the observed data according to a jeaw thousand alternative assignments
(of treatment and control) let us Increase the certainty of our analysis enough to save
either %he statistician or his client one second of worry, we cannot afford not to do the
few thousand reanalyses,

- If reanalyzirig the observed data according to a few thousand alternative assisgnents let
us provide more robustness of strhigency for our analysis, we cannot afford not to do
the few thousand analyses.
Randomization anslysis, as urged by R. A. Fisher, and founded by E. J. G. Pitman (and

B. L. Welch) grew up in an era of expensive computing, As a result even Pitman's combine-
torially obtained higher moments were forgotten in practice. (No one wanted to sum the
"cubes and 4th powers of the observed cifferences; summing squares was hard enough.)
Moreover, our attention was focused on means, as the summary to be used, in large part

1. .
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because it was only for them that the necessary formula manipulation seemed feasible.
In the interim, while computing has become so many powers of ten cheaper, we have

learned a lot about when using means ,1, give high stringency - and whoen it will not. The
way to provide both the validity that randomization has always provided, and the robust .. •
stringency that it can provide is to plan to actually do many alternative analyses, using what-
ever summary - often one providing robust stringency - seemed most desirable when the
experiment was plannedl By doing MANY reassignments explicitly, we can be quite sure of
what we are doing.

For experiments of certain sizes, we can use complete randomization, which means
mo',kng calculations for all possible assignments (within the general framework of the experi.
ment), but we cannot do this for all sizes of experimentsl 2' possible assignments means 2f
reanalyses, and we can only afford this for modest t (The bound will go up year after year). .
So we will have to consider combine explicit reassignment with limited randomizations -
something we can approach in different ways.

4. The details of explicit reassignment with complete randomiztion (2t case)
If we have t blocks, each composed of 2 units, and if treatment and control are each to

appear once in each block, there will be 21 possible assignments, ,-...,

If we have chosen a summary, for simplidty based on the t within-block treatment-
MINUS-control differences (more general summaries cause no difficulties), it is straight.
forward to introduce all possible sequences of t t signs, and thus, for each such sequence, t
values, one per block, of

possible difference - t actual difference

whose 2' summaries correspond to all possible 2t reanalyses. For each such "randomiza.
tion" there is a value of the corresponding summary - which might be a mean, a midmean,
some other trimmed mean, or a biweight of the n possible differences,

We can take these 2' summary values, rank them, and then take, as our P-value:

P-value - rank of actual assilgment

2f

If we want a one-tailed P-value, we will rank from one end -. the top or the bottom, as
appropriate - starting with the relevant extreme.

If we have a two-tailed P-value, we will rank from both ends and combine the results ,
into a single ranking. Here

Rank Rank Combined
above below rank

1 2" 2
2" 1 2
2 2"-1 4

2"-1 2 4
3 2-2 6

2"-2 3 6
4 2-3 8 a"

2N-3 4 a
(and so on)

is conventional. If, however, we want to give the rank from above a shade of preference, It '
is both legitimate and proper to use (instead): ,

481 ',
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Rank Rank Combined
Above below rank I

I 2' 1
2' 1 2

2N-1 2 4
3 r-2 5

24-2 3 6
4 r'-3 71

20-3 4 S
(and so on)

Both of these rerankingp satisfy the essential inequality:
# of assignments with combined rank s k IS ITSELF ik

The first of these rerankings alternates < and s, while the second always has s. The first is
symmetrical, the second is not wsoteful,

U we proceed in this way, choosing our summary (and our combined ranking pro.
cedure, if we are to use one) in advance of our data gathering, and doing a trustworthy job
of selecting one assignment out of 2t sufficiently nearly at random, the validity of our P-
value is guaranteed (by the quality of our randomization, which we know all about, and
which others can inspect, if we keep good records),

It may be worthwhile to explain how to guarantee that I out of 2t - say I out of 1024 -
will be chosen very, very nearly at random, A simple approach calls for 3 people who

* can be trusted to work independently of one another, AND
• of whom at least one is both honest and skilled in randomization,

We then proceed as follows:
* number all possible 1024 assignments from 0 to 1023,
* request each of the three persons to produce a random integer between 0 and 1023,

AND
a add up the three Integers, reduce the result modulo 2024, and adopt the corresponding

assignment.
No two people could combine to keep the third from making the overall choice ran.

dom,
How well we do about stringency (or other desideratum) depends on how well we

choose our summary, We do know which summary we chose. We may know how this
summary performs for a more or less flexible statistical model -- today almost certain to
involve an infinite population, The n absolute differences we actually have may collectively
throw some light on how the summary performed in our specific case.

We are just about as well off about stringency - about robustness of stringency - as we
ever are, and we are as well off about validity as we can be - since we depend only on a
process that can be monitored, recorded and inspected,

A picture may help us to get a feel:
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1024~~~ posibl asigmet

IN .'.-I

++ -- + +- +- +--+ +--...
+ +-

-- -P %. *...

-+t -- * 5 :++

++ .i
+ 45+
+ + +

16 of the 128 of the 1024

We have a stock of 1024 assIgnments and chose one at random, We summarize sets of 10
values of the form {( an observed difference) 1024 times, to get 1024 values of A given sum-
mary.

5. Some kinds of limited randomization.
The complete-randomlxsation design and analysis of experiment just described is prob.

ably most reasonable for t blocks, where 9 9 t s 12. At 2' - 512, we still have enough
assignments so that comparison with both 5% and 1% points is not serioush plagued by
granularity, At -12 - 4096, we can still face doing one analysis for each of iur-thousand-
odd assignments, But what of more than 12 blocks uf 2.

We shall discuss three approaches, briefly.

stacking up
We can stack our x blocks into k stacks, lockIng together the assignment of treatment

and control for blocks in the same stack. We then need one random : sign per stack.
If, for example, we have 24 blocks, we may stack them in 12 srock, say #24 with #1,

#23 with #2, ... , #13 with #12, and in each stack we may choose a locking together,
perhaps like this

#1 y z #2 y 2 #12 y ,.'.

#24 z y #23 y z #13 x y

where we plan to randomly assign treatment and control to y, and z or to z, and y in each .'*
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stack separately.
All our techniques, discussed today or not, WORK Just as WELL for stacks - locked-

together goupings of one or more blocks - as for single blocks. So, as we go on, we will
usually talk about stacks since this covers all cases.

With k stacks stacked and locked, there are 2A possible assignments, and we have the
full validity that we had before, and the same preference for 9 s k (S 12). We may have to N.
be careful to use a summary that Is appropriate for blocks in stacks. If we do this carefully, A
there Is no reason why the stacks should all contain the same number of blocksl

Used alone, this is already a very flexible form of limited randomization - one that
teems particularly appropriate for treatment-control differences whose distribution seems
vaguely Gaussian in shape (because we are liely* to add up the differences within each
stack).

Used together with those to be described next, "stacking up" contributes to an even
gseater degree of flexibillty.

"orthogonal amrys "
There are a wide variety of ways to use orthogonal arrays - I am about to tell you of a

rather new one, (A convenient reference Is Raktoe, Hedayat, and Federer 1981, Factorial
Designs, specifically pages 168-189 and certain of the references at pages 188-193.)

A simple example Is
1 0 0 0 0 1 1 1

;,0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

whose main virtue is that, if we pick out any three rows, ray the first, third, and fourth
S1 0 0 0 0 1 1 1

0 0 1 0 1 1 0 1 S
0 0 0 1 1 1 1 0

each of the 23 possible columns appears an equal number of times - namely, here, one.
Officially, this is an orthogonal array of size, nuS; t.4 constraints; - 2 levels (or alpha-

bet size 2); and strength dm3 (meaning that aiy three rows are completely balanced,
In conventional notation it is an

OA(8, 4, 2, 3)

Mose generally, an orthogonal array is an

OA(n, t, so d)
or an

OA(n, t, a, d, X)

where X is the common number of appearances of all subcolumns for any chosen set of d
rows. Our example is thus also an OA(S, 4, 2, 3; 1).

Lest you think that every OA is a fractional factorial, let us look at an OA (IS, 7, 3, 2),
namely:

*But do not hWev tat
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000 1 1122200011 1222
012012012012012012
012 1 2020 201 012120 2"-
021102210102210021 0
012120120012201201012201012120201120
012012201120120201

For each of the ( 2) i2choices of te rows from this array, we willlAnd
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

each occurring twice. Hence the orthogonality of atvngth two.
The "classical" employment of orthoSonal arays is as follows:

a plOU or Mns

one obsesraUon for each column

We are soing to use them quite differently, namely:

"MA US- ur
J **

"-_-ft• WWI...fon

X potendal SuarluMMOS

A rather extreme example - one that will probably prove useful now aid then - Is
shown below:

P q
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4096 potential assignments

"tic ..... l ii Il i i i I

64 assignments
stcks

iii

th~e actual experiment

(Also bear in mind that taking all 2' assignments as potential assigments - complete
randomization for t stacks - Is also using an OAI) Each of our assignments, then specifies,
for each of k stacks (each stack having one or more blocks, how the treatment and controi
ar to be assigned to the halves of that stack - and hence to the units of each of its blocks,

The dnlgir of the experiment can usefully be thought of as including the orthogonal
array from which the actual assignment is to be drawn at random.

But where do we get such medlium.sized orthogonal arrays?

When this question first arose, I was fortunate enough to ask Neil Sloane, who reached
in his supply kit and produced a small array of such OA's, each one corresponding to a
fairly well-known code (in the sense of signl.coding theory) These included (the
parentheses give their labels as fractional factorial designs):

OA( 512, 23, 2, 4) (2'* .

OA(2048, 23, 2, 6) (22u'in)
OA(I024, 24, 2,5) (22-'14)
OA(1024, 32, 2, 4) (23 22).
OA(2048, 33, 2, 5) (23322)
OA(2048, 63, 2, 4) (2 U- 2)
OA(4096, 64, 2, 5) (2_2)

where we recall that, for our uses, the notations mean OA(# of assignments, up to this ,
many blocks, 2, strength). Clearly we do quite well up to 60 blocks (or even 60 stacks of K..
blocks),

A matter of convenience and ease of use arises because
a) these arrays are cosets of certain codes,
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b) if one coset Is at OA, so is any other coset of the same code, with the same parame-
ters,

c) no two cosets overlap, while taken together they include all 2k assignments.
As a result, we can proceed as follows: .- •

1) choose a code, and thus a family of cosets, •
2) choose, randomly, any assignment as the actual assignment - and choose the coaset that

includes this assignment as the set of possible assignments. 1% 5
This convenient, one-step process is logically and philosophically equivalent to the

more obviously sound two-step process:
(I) choose a coast at random,
(iH) choose an assignment in the coset at random

Besides convenience, and making all assignments candidates for possible assignments,
this use of OA's has a particular advantage in what we might describe as ANTI-ROBUST
situations, where there are likely to be a few very large differences - for a few stacks, or for '*T
a few blocks - whose effects we want to study and focus upon, rather than to set aside - as.
the use of a robust summary would do. Moat weather-modification experiments, for
instance, whether concerned with rainfall increase or hall-damage reduction, require antlro. -"
bust analysis, since the occasional large storms yield most of the water and the occasional
violent storms cause most of the damage.

Gaussian combination of subuperimenta
The third approach to many blocks need not take us long. If we are willing to

* divide the experiment into subexperiments
* summarize these subexperiments separately, and then -
* combine these summaries i

we have only to convert the summary of each subexperiment into a reasonable (discrete) fac-
simile of a unit Gaussian deviate, add up'the facsimiles, and divide by (# of facsimiles)"', ".,,.
referring the result to the unit Gaussian distribution.

So how are we to get our nearly unit Gaussians from our subexpefment summaries?
We may as well plan to begin by ranking our 21 possible summaries for each subexperiment.

A little calculation of cumulants then leads us to suggest taking "."
unit Gaussian *cor - G [I -:

where

i gilve rank, m =2 1

and

Gau( ) is the unit Gaussian cmulative. ,

This seems fairly certain to work well for 3 or more subexperiments with 21 a 256. (The
case of 2 subexperlments can be bypassed treated directly, wfihout Gaussianizing, by a dif-
ferent calculation.)

combination
We can clearly use these devices of combination in sequence as well as alone.

protective limuitations~
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There have been recurrent suggestions for limiting randomization to avoid unusual
assignments - principally very unbalanced assignments, occasionally too regular ones,
While this is clearly more important for unblocked experiments than for blocked ones, there
is no reason for not superposing such deletions on any of the randomlzatlon-reassignment
patterns, complete or limited, we have considered so long as: so long as, before choosing the
actual assignment:
* we decide on which deletions are to be made, AND Y
* we implement these deletions UNIFORMLY, to potential and actual assignments alike,

6. Compromising by rank combination.
ALI procedures that are robust of stringer.cy are compromises, at least implidtlyl When

we want the greatest care, we are likely to want an especially thorough compromise as our :.:,
ch•sen summary, If we can find a sufficiently broadly oriented compromise summary, so
much the better. If not, then we may need to start with two or more (compromise) sum.
maries, and, further, compromise them with one another explicitly.

How should we do this? To make separate significance tests with each, and then dou-
ble the smaller of the two P-values is the counsel of the Bonferroni inequality. This would '.., ,*
-almost surely be wasteful - probably substantially so. So what is surely better?
* To rank the 2k assignments according to each summary separately - and then to com. A

bine the two sets of ranks in some appropriate way.
A simple and natural way is to put the two ranks for each assignment in lexicographi- .,.

cal order within each pair, and then sort the ordered pairs in lexicographical order of pairs,
and use this latter order to define a combined rank. The resulting correspondence

observed numbers c bn ra
possible Assignmentb r ""

does not at all depend on which of the possible assignments was the actual assignment, So ,
we know that

combined rank
2k

is a legitimate P-value, so that we are making a proper significance test. If the two sum-
maries were secretly the same, so too would be the individual ranks - and the combined
ranks - so that the compromise P-value would reduce to the common P-value for the indlvi-
dual summaries, If the two summaries are very, very different, the result of this sort of rank
combination would be very close to the Bonferroni result,

A hypothetical example may help to fix the Ideas,
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*ainet Ranks according to ordered combined
# Ut summary 2nd summeary pair rank

351 3 1(1) 1
679 1 29 (1,29) 2
224 2 42 (2,42) 3
534 97 2 (2,97) 4
976 3 4 (3,4) 5
214 14 3 (3,14) 6
723 4 53 (4,53) 7 .
431 8 5 (5,6) 8

92 t6 6 (6,6) 9
127 7 8 (7,8) 10
923 1l 7 (7,11) 11

23 9 11 (91) 12

Notice that, except for tie-breaking, the first 7 lines follow the Donferronl bound to
within a unit, but, that beyond 7, the similarities in the two separate-summary rankings &Me
so great as to produce deviations from the bound. Indeed, for (3,x), (6,y), (7,z) and (8,w)

togther we use up only 4 ranks instead of S.
This sort of indirect explicit compromise is certainly interesting, and probably promis-

ing.

7. Introduction to 3 or more treatments. '

What itwe do 3treatments innxblocks of 3? How dowe proced?
Unless the treatments are associated with the I'levels" of a quantitative x, our most

likely purpose Is to assess the significance of (to say how sure we seem to be of the direction
of) the pair-wise comparisons. So how should we compare any two treatments?

Again there is more than one approach.
Let the three treatments be F, G, H. There are 6-31 ways of assigning one each to the

3 units of any block. With n blocks; and all assignments possible, there are 6' possible
assignments.

If we want to compare F with G, and do this without interference from treatment H,
which may produce very different values, a very simple thing is to only, consider those?2
assignments as "possible" in which the LWorderd pair F, G are assigned to the same two
units in each block.

This means that we look at one family of 2' assignments to compare F with G and
another family of 2 to compare F with H. These two families will, in fact, have only one
assignment in common - namely the actual one. (This means that we do not have &Items-.Z.
tive rankings for different pair-wise comparisons, so that we seem to be driven back on a
Uonferroni-combined P-value.)

Like the casets in our code-derived OAs, the families of 2' - out of 6' - assignments
are non-overlapping. The selection of any one of ther members of such a family as the
actual assignment forces that family on us as the basis for a particular paired comparison.
Although there is not, in this case, a clear two-step equivalence, the one-step procedure Is
just as valid as the one-step procedure in the earlier instance.

second approach
To avoid both

1) the potential effects of the other treatment(s) -- regarded as well-behaved though possi- 0
bly large, and .. **

fl) the full Bonferroni penalty, in those circumstances where it is not all just~fled,
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we have to be somewhat trickier - though the resulting procedure Is almost surely nearly
enough legitimate and valid. (Any doubts that we may have of practiral performance must
then be devoted to Its stringency.)

What appears to be the simplest such approach is the following:
* use only a cyclic th'ree of the six assignments to the unitp of any block - e~g. use FGH, j',,

1-IPO or Cl-F but not HGF, FGH, or GFHi (or gi £gjg) ". 6ý
* bend the rules by analyzing the actual two-way table

1 2 3 ... n

"/0,'Z'

additively a- perhaps by loetedian polish, and that

0 adust onery,',, ctyal value byth sxubtacibnget N1teuiso n lr - ,,ueF•I.F:••

S summarize the comparisons of F-possible and C-possible for all 31 possible assign

metuigwihvrtoo -actual , ,,,...,ndH.alutd noio ha rty n

of hethre s djute) orrspndto heposibe ssimet t echofthe blocks in -

0 repeat the last two steps with first F, and then G, replacing H.
The result of all this Is a ranking for o paired

comparisons with each of the possible assignments, We can g on to combine the 3 ranksi
for a given possible assignments in each of a number of ways leading to P-values for a
number of kinds of multiple comparisons - ranging from multiple comparisons focusing on
finding at least one difference significant to multiple comparisons focusing on finding as
many differences as possible significant,

que~ on,•f ....

a. Closing comment.
Not only does limited randomization with explicit reassignment provide us with

guaranteed validity, but, ss the previous sentence about multiple comparisons suggest, it
provides us with a basis for better understarding of a variety of statistical devices.
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I)YILA, FRANK OA"• R T'I
ARMY MATERI11. TEST £ C:AIUATION A)I.tEcTORAI:
WHITE SANOS MISSILE IIANI•I-d
6iUGO-.6-3490 (AV 96U11-349b)

C0l1. I tIIIIT VERNON E,6:1 1"•Or ,ATAFFr -

WIllIE SANIIS MISSILE IHANOI,'UUG-610-t2220 (AV HII-!I.?24t)

C ELLINGSON, ANDREW C.
NATIONAL RANGE OPERATIONS DIRECTORATE
WHITE SANDS MISSILE RANGE
505-678-2311 (AV 268-2311)

S.C ELLIS, JIM
-ARMY MATERIEL TEST a EVALUATION DIRECTORATE

WHITE SANDS MISSILE RANGE
506-678-3717 (AV 258-;a717)

C ELMORE, ROBERT E,
INSTRUMENTATION PLANS A ANALYSIS DIVISION
YUMA PROVING GR.OUND
602-328-3111 (AV 899-3111)

S ELOWITZ, BILL
ARMY MATERIEL TEST a EVALUATION DIRECTORATE
WHITE SANDS MISSILE RANGE
606-678-9135 (AV 258-9136)

C MAJ ENGSTROM, GREG
USA TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
605-678-2043 (AV 268-2043)

CB ESSENWANGER OSKARRESEARCH DIRECTORATE,•)

US ARMY MISSILE COMMAND h'"7

206-876-4072

S,C EVANS, TROY
ARMY MATERIEL TEST A EVALUATION DIRECTORATE
WHITE SANDS MISSILE RANGE
506-678-9227 (AV 268-9227)

SCoD FARRELL RUSSELL
ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING nROUND IPA.
(AV 283-6628)
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US ARMY NA'rICK
RESEAlRCll A UEVELUI'MINI' MNILK
(AV 1-GuU01,)

Cou FI'RYER, GUSTAV J.
PHYSICAL SCIENCE LAD
NEW MEXICO STATE UNIVERSITY
605-522-9409

C1B GEMMILL GARY W.
NAVAL SURFACE WEAPONS CENTER
703-663-7420

C GLAZE, RICHARD
STATISTICS CENTER
NEW MEXICO STATE UNIVERSITY
605.646,2936

B GONZALEZ, ALBERTO
INSTRUMENTATION DIRECTORATE
WHITE SANDS MI;SILE RANGE
606-678-6214 (AV 2•8-5214)

C GONZALEZ, FRANK
USA TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
806-678-1070 (AV 250-1070)

C GOODALL, DON
PLANS AND QUALITY ASSURANCE DIRECTORATE
WHITE SANDS MISSILE RANGE
60-07-705003 (AV 2O-560iO3)

S(IUUWILL, lo UItUUN
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WHITE SANDS MISSILE RANGE
505-670-2291 (AV 258-2291)

C GREGORY, GAVIN
UNIVERSITY OF TEXAS AT EL PASO
9I5-747-6332
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BROWN UNIVERSIrY
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CB GRYNOVICKI, JOCK
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RESEARCH LABORATORY
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C HALL, CARROLL
EXPERIMENTAL STATISTICS DEPARTMENT
NEW MEXICO STATE UNIVERSITY
!UG-046-2930

c IIALLICAN, JAMES Co
, HE" S U)EN t
NEW MEXICO STATE UNIVE1RSIrY
605-646-2035

S C,B HARRIS BERNARD
UNIVER§ITY OF WISCONSIN
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608-263-2656

S HEATH, ROY L.
NATIONAL RANGE OPERATIONS DIRECTORATE
WHITE SANDS MISSILE RANGE
505-678-2311 (AV 258-2311)

S,C,tI II'^MANN, JAMIES I•i
115 AIIMY MAr'l'",tilIrl. SYSrlr'S ANALYSIq ACrlVITY
AIIFItI)IUEN I'IIOVINil (01)1NI)
30I-tP 1,60129 (AV 2113,, ou ."" )
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C HULL, JAN C.
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NF.W MEXICO STATE UNIVERSITY
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SCa IIUNTER, CHARLES J.
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ONO (CANADA)
613-992-3684
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S JAMES, SHELDON
ARMY MATERIEL TEST A EVALUATION DIRECTORATE
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606-678-3717 (AV 258-3717)

C JELIHOUSEHI, ENIO
UNIVERSITY OF TEXAS AT EL PASO
915-747-5761

C JOHNSON, RONALD
US ARMY IELVOIR RID CENTER
(AV 354-6771)

C,B KAPUR, KAILASH
US ARMY TANK AUTOMOTIVE COMMAND
313-574-6064

S KILLAN WILLIAM R,
"DIRECTED ENERGY DIRECTORATE v
"WHITE SANDS MISSILE RANGE
505-678-1930 (AV 258-1930)

S,C,B KNAUB, JIM
US ARMY LOGISTICS CENTER
804-734-6662 CAV 687-5662)

"C MAJ KOLB, RICKEY A.
." US MILITARY ACADEMY
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NEW MEXICO STATE UNIVERSITY
EXPERIMENTAL STAT DEPT
606-646-2936
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NATIONAL. RAN(IE OPERA'rI(NS DIItECCCUArE
WIIITE SANIDS MISSILE RANG.
606-657-2311 (AV 258-2311)

S MCMANUS, LAWRENCE
USA ARMY TRADOC OPEIA'rioNS RESEARCH AcriVITY
606-658-4631 (AV 268-4631)

c MrAsUN, JOHN
ARMY MATERIE•. TEsr s rVALUlAI'IUN UlIWCI'0I1,AIIi.
WHITE SANDS MISSILE RANGI" '41
505-679-9484 (AV 268-9484)

SaC18 MOORE, J. RICHARD
US ARMY BALLISTIC RESEARCH LABORATORY
301-278-6666 (AV 283-6666)

C MURRAY, LEIGH '
NEW MEXICO STATE UNIVERSITY
EXPERIMENTAL STAT DEPT
606-646-5106

S MYERS. BRENDA
ARMY MATERIEL TEST A EVALUATION DIRECTORATE
WHITE SANDS MISSILE RANGE __
606-678-9330 (AV 258-9330)
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UNIV STATISTICS CENTER
NEW MEXICO STATE UNIVERSITY
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SIC,B UIUTI, MLLCIIUW I
NEW MEXICO STATE UNIVERSITY
EXPERIMENTAL S'rAT DCP'r
606-646-2936

C PARRA, MARIO Z,
PLANS AND QUALITY AS3SURANCE UIRECTORATE
WHITE SANDS MISSILE RANGE
606-670-2173 (AV 260-2173)

C*B PARZEN, EMANUEL
TEXAS A&M UNIVERSITY
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409-845-3188

S PETERSON, EMERY
COMPUTER SYSTEMS DIRECTORATE
WHITE SANDS MISSILE RANGE
505-678-2947 (AV 258-2947)

Cl PETTIBONE, TIMOTHY
NEW MEXICO STATE UNIVERSITY
ED. RES. CENTER
505-646-1500 ',

CB PHILLIPS, KEITH '*4•
NEW MEXICO STATE UNIVERSITY
DEPT OF MATH SC;ENCES
505-646-1223

S PRICE, RAYMON
USA TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
505-678-1763 (AV 258-1763)

C a PROSCHAN, FRANK ,,.,..,.FLORIDA STATE UNIVERSITY

904-644-3218

CB COL RANDALL, JACK
DEPUTY FOR AIR FORCE
WHITE SANDS MISSILE RANGE
505-678-1251 (AV 258-1251)

C RANKIN, DONALD
RETIRED CIVIL SERVICE
916-766-6346

C RICHARDS, WINSTON
NEW MEXICO STATE UNIVERSITY "
605-646-2936
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C ROBERTS, PAMELA
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S ROENFELDT, ROGER D.
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WIITE SANDS MISSILE RANGE
505-678-2184 (AV 258-2184)

S.C ROGERS, GERALD,1.4
NEW MEXICO STATE UNIVERSITY
505-646-2217

C ROJO, JAVIER
UNIVERSITY OF TEXAS AT EL PASO
915-747-5761

S,C,B RUSSELL, CARL T.
OTEA
(AV 289-2389)

C SAIA, ED
USA TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
505-678-2043 (AV 258-2043)

C•o SAMPSON, JAMES 0.
US ARMY NATICK
RESEARCH A DEVELOPMENT CENTER
(AV 256-4698)

C SANCHEZ, JAIME
EXP STAT DEPT
NEW MEXICO STATE UNIVERSITY
506-646-2936

S rANC111r', S;AM
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C C:IIIISILI , LIUILNL
UNIVEIRSITY OF TEXAS Ar LL PASO
915-747-5761

SCDl SCLOVE, SI'ANLEY L.
UNIVEISI'Y OFr ILLINOIS AT CIICAGO
312-995-2601

C SCOTT, DAVID
NEW MEXICO STATE UNIVERSITY
505-046-2936

CoB SETItURAMAN, J.
SFLORIDA STATE UNIVERSITY
DEPT OF STATISTICS
904-644-3218

C SHtOOK, GEORGE W.
lISA TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RAN(r
606-678-4300 (AV 2611-4300)

C,o SINGPURWALLA, NOZER I).
GEORGE WASHINGTON UNIVERSITY
DEPT OF OPERATI*ONS RESEARCH
202-676-7615

C,o SMITH, DAVID W.
NEW MEXICO STATE UNIVERSITY
EXPERIMENTAL STATISTICS DEPARTMENT
505-646-2936

S C,B SOUTHWARD, G. MORRIS
NEW MEXICO STATE UNIVERSITY
EXPERIMENTAL STATISTICS DEPARTMENT
605-646-2936

• . C STCWHAl I, PERRlY

"EXECUfIVE INs'riT'Iu n
DEFENSE SYS MANAGEMENT COLLEGE
(AV 354-5785)

S SWEANY, TOM
"ARMY MATERIEL TEST & EVALUATION DIRECTORATE
WHITE SANDS MISSILE RANGE
605-678-3496 (AV 258-3496) 4

SIC SWINGLE, DONALD
CONSULTANT

S505-522-5197

504 .*

*4* -U **•4 -m * j•-. -U*4 u~ ~ U U • , "*

.4..* ... , .. ,..U.~.:, ... ... ,., U ` 4`&:z`•••:• • • ``` ` •:; : `` `
.., ....... , .. . ,...., ....~ 4 ,* .. .. ,. ,. , , •3 .; .+,•, • .. • •



s ,CIJ TAN(., UIUGI.AS
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USA 'TRADOC SYSTEMS ANALYSIS ACrIVITY
WHITE SANDS MISSILE RANGE
505-678-2038 (AV 258-2038)

SIC THRASHER, PAUL IH
PLANS AND QUALITY ASSURANCE DIRECTORATE
WIIITESANI)S MISSILE RANGE
505-678-2172 (AV 258-2172)

S TIBSHIRANI, ROBERT J.
STANFORD UNIVERSITY
416-497-2627

S TOFSTEDo DAVID
ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE
505-678-3039 (AV 258-3039)

C,B TUKEY, JOHN W.
PRINCETON UNIVERSITY
BELL LABS
609-452-4219

SC TURNER, ROBERT 1H.
NATIONAL RANGE OPERATIONS DIRECTORATE
WHITE SANDS MISSILE RANGE
505-678-6833 (AV 258-5833)

C URQUIIART, N. SCOTT
DEPARTMENT OF EXPERIMENTAL STATISTICS
NEW MEXICO STATE UNIVERSITY
505-646-2936.

S VALVERDE-WARD, DEBORAH
ARMY MATERIEL TEST & EVALUATION DIRECTORATE
WHITE SANDS MISSILE RANGE
505-678-1285 (AV 258-1285)
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ARMY MAII:I4IALS ,,.
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017-923-6414
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NEW MEXICO SrA'rt UNIVERSITY
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